References
-
Akbari Nakhjavani, S., Mirzajani, H., Carrara, S. & Onbaşlı, M. C. Advances in biosensor technologies for infectious diseases detection. TrAC Trend. Anal. Chem. 180, 117979. https://doi.org/10.1016/j.trac.2024.117979 (2024).
-
Scott, G. Y. et al. Transforming early microbial detection: Investigating innovative biosensors for emerging infectious diseases. Adv. Biomark. Sci. Technol. 6, 59–71. https://doi.org/10.1016/j.abst.2024.04.002 (2024).
-
Rasmi, Y., Li, X., Khan, J., Ozer, T. & Choi, J. R. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: Current progress, challenges, and future prospects. Anal. Bioanal. Chem. 413, 4137–4159. https://doi.org/10.1007/s00216-021-03377-6 (2021).
-
Frigoli, M. et al. Emerging biomimetic sensor technologies for the detection of pathogenic bacteria: A commercial viability study. ACS omega 9, 23155–23171. https://doi.org/10.1021/acsomega.4c01478 (2024).
-
Sequeira-Antunes, B. & Ferreira, H. A. Nucleic acid aptamer-based biosensors: A review. Biomedicines 11, 3201. https://doi.org/10.3390/biomedicines11123201 (2023).
-
Guliy, O. I., Evstigneeva, S. S., Khanadeev, V. A. & Dykman, L. A. Antibody phage display technology for sensor-based virus detection: Current status and future prospects. Biosensors (Basel) https://doi.org/10.3390/bios13060640 (2023).
-
Wang, M., Pang, S., Zhang, H., Yang, Z. & Liu, A. Phage display based biosensing: Recent advances and challenges. TrAC Trend. Anal. Chem. 173, 117629. https://doi.org/10.1016/j.trac.2024.117629 (2024).
-
Léguillier, V., Heddi, B. & Vidic, J. Recent advances in aptamer-based biosensors for bacterial detection. Biosensors (Basel) https://doi.org/10.3390/bios14050210 (2024).
-
Kohlberger, M. & Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 69, 1771–1792. https://doi.org/10.1002/bab.2244 (2022).
-
Moon, J. et al. Research progress of M13 bacteriophage-based biosensors. Nanomaterials 9, 1448. https://doi.org/10.3390/nano9101448 (2019).
-
Smith, G. P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317. https://doi.org/10.1126/science.4001944 (1985).
-
Rakonjac, J., Gold, V. A. M., León-Quezada, R. I. & Davenport, C. H. Structure, biology, and applications of filamentous bacteriophages. Cold Spring Harbor protoc. https://doi.org/10.1101/pdb.over107754 (2024).
-
Kim, S., Heo, H. R., Kim, C. S. & Shin, H. H. Genetically engineered bacteriophages as novel nanomaterials: Applications beyond antimicrobial agents. Front. Bioeng. Biotechnol. 12, 1319830. https://doi.org/10.3389/fbioe.2024.1319830 (2024).
-
Campuzano, S., Pedrero, M., Barderas, R. & Pingarrón, J. M. Breaking barriers in electrochemical biosensing using bioinspired peptide and phage probes. Anal. Bioanal. Chem. 416, 7225–7247. https://doi.org/10.1007/s00216-024-05294-w (2024).
-
Hsu, C. et al. Recent progress on phage display-based biosensing systems for detection of pathogenic bacteria in food and water. Microchem. J. 208, 112356. https://doi.org/10.1016/j.microc.2024.112356 (2025).
-
Zhou, Y. et al. Development of a phage-based electrochemical biosensor for detection of Escherichia coli O157: H7 GXEC-N07. Bioelectrochemistry (Amsterdam, Netherlands) https://doi.org/10.1016/j.bioelechem.2022.108345 (2023).
-
Sedki, M., Chen, X., Chen, C., Ge, X. & Mulchandani, A. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms. Biosens. Bioelectron. 148, 111794. https://doi.org/10.1016/j.bios.2019.111794 (2020).
-
Nakama, K., Sedki, M. & Mulchandani, A. Label-free chemiresistor biosensor based on reduced graphene oxide and M13 bacteriophage for detection of coliforms. Anal. Chim. Acta. 1150, 338232. https://doi.org/10.1016/j.aca.2021.338232 (2021).
-
Shin, J. H. et al. Electrochemical detection of caspase-3 based on a chemically modified M13 phage virus. Bioelectrochemistry (Amsterdam, Netherlands) https://doi.org/10.1016/j.bioelechem.2022.108090 (2022).
-
Yang, H. J., Raju, C. V., Choi, C. & Park, J. P. Electrochemical peptide-based biosensor for the detection of the inflammatory disease biomarker, interleukin-1beta. Anal. Chim. Acta. 1295, 342287. https://doi.org/10.1016/j.aca.2024.342287 (2024).
-
Shin, J. H. et al. Quantitative label-free determination of thrombin using a chemically-modified M13 virus-electrode interface. Biotechnol. Bioproc. E. 28, 235–245. https://doi.org/10.1007/s12257-022-0361-9 (2023).
-
Shin, J. H., Park, T. J., Hyun, M. S. & Park, J. P. A phage virus-based electrochemical biosensor for highly sensitive detection of ovomucoid. Food chem. 378, 132061. https://doi.org/10.1016/j.foodchem.2022.132061 (2022).
-
Abdelhamied, N., Abdelrahman, F., El-Shibiny, A. & Hassan, R. Y. A. Bacteriophage-based nano-biosensors for the fast impedimetric determination of pathogens in food samples. Sci. Rep. 13, 3498. https://doi.org/10.1038/s41598-023-30520-3 (2023).
-
Zheng, Z. et al. Sensitive amperometric immunosensor for pathogen antigen based on MoS2@AuNPs assembling dual-peptide as bioprobes with significant dual signal amplification. Anal. Chim. Acta. 1355, 344015. https://doi.org/10.1016/j.aca.2025.344015 (2025).
-
Yang, F. et al. Phage display-derived peptide for the specific binding of SARS-CoV-2. ACS omega 7, 3203–3211. https://doi.org/10.1021/acsomega.1c04873 (2022).
-
Seo, G. et al. Ultrasensitive biosensing platform for Mycobacterium tuberculosis detection based on functionalized graphene devices. Front. Bioeng. Biotechnol. 11, 1313494. https://doi.org/10.3389/fbioe.2023.1313494 (2023).
-
Kadadou, D. et al. Optimization of an rGO-based biosensor for the sensitive detection of bovine serum albumin: Effect of electric field on detection capability. Chemosphere (Oxford) https://doi.org/10.1016/j.chemosphere.2022.134700 (2022).
-
Kadadou, D. et al. Detection of SARS-CoV-2 in clinical and environmental samples using highly sensitive reduced graphene oxide (rGO)-based biosensor. Chem. Eng. J. https://doi.org/10.1016/j.cej.2022.139750 (2023).
-
Figueroa-Miranda, G. et al. Delineating charge and capacitance transduction in system-integrated graphene-based BioFETs used as aptasensors for malaria detection. Biosens. Bioelectron. 208, 114219. https://doi.org/10.1016/j.bios.2022.114219 (2022).
-
Walters, F. et al. A rapid graphene sensor platform for the detection of viral proteins in low volume samples. Adv. NanoBiomed. Res. (Online) https://doi.org/10.1002/anbr.202100140 (2022).
-
Zhang, Z., Zhang, L., Huang, Y., Wang, Z. & Ren, Z. A. Planar-gate graphene field-effect transistor integrated portable platform for rapid detection of colon cancer-derived exosomes. Biosensors (Basel) 15, 207. https://doi.org/10.3390/bios15040207 (2025).
-
Moosa, A. A. & Abed, M. S. Graphene preparation and graphite exfoliation. Turkish J. chem. 45, 493–519. https://doi.org/10.3906/kim-2101-19 (2021).
-
de Heer, W. A. et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. 108, 16900–16905. https://doi.org/10.1073/pnas.1105113108 (2011).
-
Zhang, P., Li, Z., Zhang, S. & Shao, G. Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energy Environ. Mater. 1, 5–12. https://doi.org/10.1002/eem2.12001 (2018).
-
Ozbey, S., Keles, G. & Kurbanoglu, S. Innovations in graphene-based electrochemical biosensors in healthcare applications. Microchim. Acta. 192, 290. https://doi.org/10.1007/s00604-025-07141-w (2025).
-
Yu, H. et al. Reduced graphene oxide nanocomposite based electrochemical biosensors for monitoring foodborne pathogenic bacteria: A review. Food control. 127, 108117. https://doi.org/10.1016/j.foodcont.2021.108117 (2021).
-
Sin, M. L., Mach, K. E., Wong, P. K. & Liao, J. C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert. Rev. Mol. Diagn. 14, 225–244. https://doi.org/10.1586/14737159.2014.888313 (2014).
-
Rodríguez-Franco, P., Abad, L., Muñoz-Pascual, F. X., Moreno, M. & Baldrich, E. Effect of the transducer’s surface pre-treatment on SPR aptasensor development. Sens. Actuator. B. Chem. https://doi.org/10.1016/j.snb.2013.10.046 (2014).
-
Tai, W. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol. Immunol. 17, 613–620. https://doi.org/10.1038/s41423-020-0400-4 (2020).
-
Chaibun, T. et al. Highly sensitive and specific electrochemical biosensor for direct detection of hepatitis C virus RNA in clinical samples using DNA strand displacement. Sci. Rep. 14, 23792–10. https://doi.org/10.1038/s41598-024-74454-w (2024).
-
Poudyal, D. C. et al. Low-volume electrochemical sensor platform for direct detection of paraquat in drinking water. Electrochem 5, 341–353. https://doi.org/10.3390/electrochem5030022 (2024).
-
Armbruster, D. A. & Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29(1), 49 (2008).
-
Yang, L., Zhang, L., Jiao, X., Qiu, Y. & Xu, W. The electrochemical performance of reduced graphene oxide prepared from different types of natural graphites. RSC Adv. 11, 442–452. https://doi.org/10.1039/d0ra09684a (2021).
-
Feizi, S., Mehdizadeh, A., Hosseini, M. A., Jafari, S. A. & Ashtari, P. Reduced graphene oxide/polymethyl methacrylate (rGO/PMMA) nanocomposite for real time gamma radiation detection. Nucl. Instrum. Method. Phys. Res. 940, 72–77. https://doi.org/10.1016/j.nima.2019.06.001 (2019).
-
Hidayah, N. M. S. et al. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP conf. proc. https://doi.org/10.1063/1.5005764 (2017).
-
Ni, J., Liu, R. & Yan, C. Facile construction of poly(styrene-acrolein)/reduced graphene oxide nanocomposites via in-situ reduction and its corrosion resistance properties in waterborne acrylic resin coating. Chem. Phys. Lett. 772, 138570. https://doi.org/10.1016/j.cplett.2021.138570 (2021).
-
Khan, M. U. & Shaida, M. A. Reduction mechanism of graphene oxide including various parameters affecting the C/O ratio. Mater. Today Commun. 36, 106577. https://doi.org/10.1016/j.mtcomm.2023.106577 (2023).
-
Lavín, Á. et al. On the determination of uncertainty and limit of detection in label-free biosensors. Sensors 18, 2038. https://doi.org/10.3390/s18072038 (2018).
-
Machera, S. J., Niedziółka-Jönsson, J. & Szot-Karpińska, K. Phage-based sensors in medicine: A review. Chemosensors 8, 61. https://doi.org/10.3390/chemosensors8030061 (2020).
-
Yuan, J. et al. Truncated M13 phage for smart detection of E. coli under dark field. J. nanobiotechnol. https://doi.org/10.1186/s12951-024-02881-y (2024).
-
Aslan, B. C. et al. Bacteriophage-gated optical sensor for bacteria detection. Anal. Chem. (Washington) https://doi.org/10.1021/acs.analchem.5c00780 (2025).
-
Miranda, O. R. et al. Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J. Am. Chem. Soc. 133, 9650–9653. https://doi.org/10.1021/ja2021729 (2011).
-
Jiang, C., Mu, X., Du, B. & Tong, Z. A review of electrochemical biosensor application in the detection of the SARS-COV-2. Micro. Nano. Lett. 17, 49–58. https://doi.org/10.1049/mna2.12101 (2022).
-
Patel, S. K. et al. Recent advances in biosensors for detection of COVID-19 and other viruses. RBME 16, 1–16. https://doi.org/10.1109/RBME.2022.3212038 (2023).
-
Lee, D. Y. et al. Analysis of commercial fetal bovine serum (FBS) and its substitutes in the development of cultured meat. Food Res. Int. 174, 113617. https://doi.org/10.1016/j.foodres.2023.113617 (2023).
-
Arain, M. A. et al. A review on camel milk composition, techno- functional properties and processing constraints. Food Sci. Anim. Res. 44, 739–757. https://doi.org/10.5851/kosfa.2023.e18 (2024).
-
Ke, Z. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588, 498–502. https://doi.org/10.1038/s41586-020-2665-2 (2020).
-
Laue, M. et al. Morphometry of SARS-CoV and SARS-CoV-2 particles in ultrathin plastic sections of infected Vero cell cultures. Sci. Rep. 11, 3515. https://doi.org/10.1038/s41598-021-82852-7 (2021).
-
Kyosei, Y. et al. Ultrasensitive detection of SARS-CoV-2 spike proteins using the Thio-NAD cycling reaction: A preliminary study before clinical trials. Microorganisms 9, 2214. https://doi.org/10.3390/microorganisms9112214 (2021).
-
Acer, P. T., Kelly, L. M., Lover, A. A. & Butler, C. S. Quantifying the relationship between SARS-CoV-2 wastewater concentrations and building-level COVID-19 prevalence at an isolation residence using a passive sampling approach. medRxiv https://doi.org/10.1101/2022.04.07.22273534 (2022).
-
Sharma, P. K. et al. Ultrasensitive and reusable graphene oxide-modified double-interdigitated capacitive (DIDC) sensing chip for detecting SARS-CoV-2. ACS Sensor. 6, 3468–3476. https://doi.org/10.1021/acssensors.1c01437 (2021).
-
Sharma, P. K. et al. Ultrasensitive probeless capacitive biosensor for amyloid beta (Aβ1-42) detection in human plasma using interdigitated electrodes. Biosensor. Bioelectron. 212, 114365. https://doi.org/10.1016/j.bios.2022.114365 (2022).
-
Verma, M. K. et al. Rapid diagnostic methods for SARS-CoV-2 (COVID-19) detection: An evidence-based report. J. med. Life. https://doi.org/10.25122/jml-2021-0168 (2021).
-
Huang, L. et al. Capacitive biosensors for label-free and ultrasensitive detection of biomarkers. Talanta 266, 124951. https://doi.org/10.1016/j.talanta.2023.124951 (2024).
-
Torres, M. D. T., de Araujo, W. R., de Lima, L. F., Ferreira, A. L. & de la Fuente-Nunez, C. Low-cost biosensor for rapid detection of SARS-CoV-2 at the point of care. Matter 4, 2403–2416. https://doi.org/10.1016/j.matt.2021.05.003 (2021).
-
Fabiani, L. et al. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosensor. Bioelectron. 171, 112686. https://doi.org/10.1016/j.bios.2020.112686 (2021).
-
Rahmati, Z., Roushani, M., Hosseini, H. & Choobin, H. Electrochemical immunosensor with Cu2O nanocube coating for detection of SARS-CoV-2 spike protein. Microchim. Acta. 188, 105. https://doi.org/10.1007/s00604-021-04762-9 (2021).
-
Ali, M. A. et al. An advanced healthcare sensing platform for direct detection of viral proteins in seconds at femtomolar concentrations via aerosol jet 3D-printed nano and biomaterials. Adv. Mater. Interfac. https://doi.org/10.1002/admi.202400005 (2024).
-
Yakoh, A. et al. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosensor. Bioelectron. 176, 112912. https://doi.org/10.1016/j.bios.2020.112912 (2021).
-
Zhang, Z. et al. High‐affinity dimeric aptamers enable the rapid electrochemical detection of wild‐type and B.1.1.7 SARS‐CoV‐2 in unprocessed saliva. Angew. Chem. Int. Edit. https://doi.org/10.1002/anie.202110819 (2021).
-
Rahmati, Z., Roushani, M., Hosseini, H. & Choobin, H. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH)2 nanorods arrays as a high-performance surface substrate. Bioelectrochemistry 146, 108106. https://doi.org/10.1016/j.bioelechem.2022.108106 (2022).
-
Idili, A., Parolo, C., Alvarez-Diduk, R. & Merkoçi, A. Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS Sensor. 6, 3093–3101. https://doi.org/10.1021/acssensors.1c01222 (2021).
