An engineered M13 phage–rGO electrochemical biosensor for rapid detection of viral protein in complex matrices

an-engineered-m13-phage–rgo-electrochemical-biosensor-for-rapid-detection-of-viral-protein-in-complex-matrices
An engineered M13 phage–rGO electrochemical biosensor for rapid detection of viral protein in complex matrices

References

  1. Akbari Nakhjavani, S., Mirzajani, H., Carrara, S. & Onbaşlı, M. C. Advances in biosensor technologies for infectious diseases detection. TrAC Trend. Anal. Chem. 180, 117979. https://doi.org/10.1016/j.trac.2024.117979 (2024).

    Google Scholar 

  2. Scott, G. Y. et al. Transforming early microbial detection: Investigating innovative biosensors for emerging infectious diseases. Adv. Biomark. Sci. Technol. 6, 59–71. https://doi.org/10.1016/j.abst.2024.04.002 (2024).

    Google Scholar 

  3. Rasmi, Y., Li, X., Khan, J., Ozer, T. & Choi, J. R. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: Current progress, challenges, and future prospects. Anal. Bioanal. Chem. 413, 4137–4159. https://doi.org/10.1007/s00216-021-03377-6 (2021).

    Google Scholar 

  4. Frigoli, M. et al. Emerging biomimetic sensor technologies for the detection of pathogenic bacteria: A commercial viability study. ACS omega 9, 23155–23171. https://doi.org/10.1021/acsomega.4c01478 (2024).

    Google Scholar 

  5. Sequeira-Antunes, B. & Ferreira, H. A. Nucleic acid aptamer-based biosensors: A review. Biomedicines 11, 3201. https://doi.org/10.3390/biomedicines11123201 (2023).

    Google Scholar 

  6. Guliy, O. I., Evstigneeva, S. S., Khanadeev, V. A. & Dykman, L. A. Antibody phage display technology for sensor-based virus detection: Current status and future prospects. Biosensors (Basel) https://doi.org/10.3390/bios13060640 (2023).

    Google Scholar 

  7. Wang, M., Pang, S., Zhang, H., Yang, Z. & Liu, A. Phage display based biosensing: Recent advances and challenges. TrAC Trend. Anal. Chem. 173, 117629. https://doi.org/10.1016/j.trac.2024.117629 (2024).

    Google Scholar 

  8. Léguillier, V., Heddi, B. & Vidic, J. Recent advances in aptamer-based biosensors for bacterial detection. Biosensors (Basel) https://doi.org/10.3390/bios14050210 (2024).

    Google Scholar 

  9. Kohlberger, M. & Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 69, 1771–1792. https://doi.org/10.1002/bab.2244 (2022).

    Google Scholar 

  10. Moon, J. et al. Research progress of M13 bacteriophage-based biosensors. Nanomaterials 9, 1448. https://doi.org/10.3390/nano9101448 (2019).

    Google Scholar 

  11. Smith, G. P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317. https://doi.org/10.1126/science.4001944 (1985).

    Google Scholar 

  12. Rakonjac, J., Gold, V. A. M., León-Quezada, R. I. & Davenport, C. H. Structure, biology, and applications of filamentous bacteriophages. Cold Spring Harbor protoc. https://doi.org/10.1101/pdb.over107754 (2024).

    Google Scholar 

  13. Kim, S., Heo, H. R., Kim, C. S. & Shin, H. H. Genetically engineered bacteriophages as novel nanomaterials: Applications beyond antimicrobial agents. Front. Bioeng. Biotechnol. 12, 1319830. https://doi.org/10.3389/fbioe.2024.1319830 (2024).

    Google Scholar 

  14. Campuzano, S., Pedrero, M., Barderas, R. & Pingarrón, J. M. Breaking barriers in electrochemical biosensing using bioinspired peptide and phage probes. Anal. Bioanal. Chem. 416, 7225–7247. https://doi.org/10.1007/s00216-024-05294-w (2024).

    Google Scholar 

  15. Hsu, C. et al. Recent progress on phage display-based biosensing systems for detection of pathogenic bacteria in food and water. Microchem. J. 208, 112356. https://doi.org/10.1016/j.microc.2024.112356 (2025).

    Google Scholar 

  16. Zhou, Y. et al. Development of a phage-based electrochemical biosensor for detection of Escherichia coli O157: H7 GXEC-N07. Bioelectrochemistry (Amsterdam, Netherlands) https://doi.org/10.1016/j.bioelechem.2022.108345 (2023).

    Google Scholar 

  17. Sedki, M., Chen, X., Chen, C., Ge, X. & Mulchandani, A. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms. Biosens. Bioelectron. 148, 111794. https://doi.org/10.1016/j.bios.2019.111794 (2020).

    Google Scholar 

  18. Nakama, K., Sedki, M. & Mulchandani, A. Label-free chemiresistor biosensor based on reduced graphene oxide and M13 bacteriophage for detection of coliforms. Anal. Chim. Acta. 1150, 338232. https://doi.org/10.1016/j.aca.2021.338232 (2021).

    Google Scholar 

  19. Shin, J. H. et al. Electrochemical detection of caspase-3 based on a chemically modified M13 phage virus. Bioelectrochemistry (Amsterdam, Netherlands) https://doi.org/10.1016/j.bioelechem.2022.108090 (2022).

    Google Scholar 

  20. Yang, H. J., Raju, C. V., Choi, C. & Park, J. P. Electrochemical peptide-based biosensor for the detection of the inflammatory disease biomarker, interleukin-1beta. Anal. Chim. Acta. 1295, 342287. https://doi.org/10.1016/j.aca.2024.342287 (2024).

    Google Scholar 

  21. Shin, J. H. et al. Quantitative label-free determination of thrombin using a chemically-modified M13 virus-electrode interface. Biotechnol. Bioproc. E. 28, 235–245. https://doi.org/10.1007/s12257-022-0361-9 (2023).

    Google Scholar 

  22. Shin, J. H., Park, T. J., Hyun, M. S. & Park, J. P. A phage virus-based electrochemical biosensor for highly sensitive detection of ovomucoid. Food chem. 378, 132061. https://doi.org/10.1016/j.foodchem.2022.132061 (2022).

    Google Scholar 

  23. Abdelhamied, N., Abdelrahman, F., El-Shibiny, A. & Hassan, R. Y. A. Bacteriophage-based nano-biosensors for the fast impedimetric determination of pathogens in food samples. Sci. Rep. 13, 3498. https://doi.org/10.1038/s41598-023-30520-3 (2023).

    Google Scholar 

  24. Zheng, Z. et al. Sensitive amperometric immunosensor for pathogen antigen based on MoS2@AuNPs assembling dual-peptide as bioprobes with significant dual signal amplification. Anal. Chim. Acta. 1355, 344015. https://doi.org/10.1016/j.aca.2025.344015 (2025).

    Google Scholar 

  25. Yang, F. et al. Phage display-derived peptide for the specific binding of SARS-CoV-2. ACS omega 7, 3203–3211. https://doi.org/10.1021/acsomega.1c04873 (2022).

    Google Scholar 

  26. Seo, G. et al. Ultrasensitive biosensing platform for Mycobacterium tuberculosis detection based on functionalized graphene devices. Front. Bioeng. Biotechnol. 11, 1313494. https://doi.org/10.3389/fbioe.2023.1313494 (2023).

    Google Scholar 

  27. Kadadou, D. et al. Optimization of an rGO-based biosensor for the sensitive detection of bovine serum albumin: Effect of electric field on detection capability. Chemosphere (Oxford) https://doi.org/10.1016/j.chemosphere.2022.134700 (2022).

    Google Scholar 

  28. Kadadou, D. et al. Detection of SARS-CoV-2 in clinical and environmental samples using highly sensitive reduced graphene oxide (rGO)-based biosensor. Chem. Eng. J. https://doi.org/10.1016/j.cej.2022.139750 (2023).

    Google Scholar 

  29. Figueroa-Miranda, G. et al. Delineating charge and capacitance transduction in system-integrated graphene-based BioFETs used as aptasensors for malaria detection. Biosens. Bioelectron. 208, 114219. https://doi.org/10.1016/j.bios.2022.114219 (2022).

    Google Scholar 

  30. Walters, F. et al. A rapid graphene sensor platform for the detection of viral proteins in low volume samples. Adv. NanoBiomed. Res. (Online) https://doi.org/10.1002/anbr.202100140 (2022).

    Google Scholar 

  31. Zhang, Z., Zhang, L., Huang, Y., Wang, Z. & Ren, Z. A. Planar-gate graphene field-effect transistor integrated portable platform for rapid detection of colon cancer-derived exosomes. Biosensors (Basel) 15, 207. https://doi.org/10.3390/bios15040207 (2025).

    Google Scholar 

  32. Moosa, A. A. & Abed, M. S. Graphene preparation and graphite exfoliation. Turkish J. chem. 45, 493–519. https://doi.org/10.3906/kim-2101-19 (2021).

    Google Scholar 

  33. de Heer, W. A. et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. 108, 16900–16905. https://doi.org/10.1073/pnas.1105113108 (2011).

    Google Scholar 

  34. Zhang, P., Li, Z., Zhang, S. & Shao, G. Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energy Environ. Mater. 1, 5–12. https://doi.org/10.1002/eem2.12001 (2018).

    Google Scholar 

  35. Ozbey, S., Keles, G. & Kurbanoglu, S. Innovations in graphene-based electrochemical biosensors in healthcare applications. Microchim. Acta. 192, 290. https://doi.org/10.1007/s00604-025-07141-w (2025).

    Google Scholar 

  36. Yu, H. et al. Reduced graphene oxide nanocomposite based electrochemical biosensors for monitoring foodborne pathogenic bacteria: A review. Food control. 127, 108117. https://doi.org/10.1016/j.foodcont.2021.108117 (2021).

    Google Scholar 

  37. Sin, M. L., Mach, K. E., Wong, P. K. & Liao, J. C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert. Rev. Mol. Diagn. 14, 225–244. https://doi.org/10.1586/14737159.2014.888313 (2014).

    Google Scholar 

  38. Rodríguez-Franco, P., Abad, L., Muñoz-Pascual, F. X., Moreno, M. & Baldrich, E. Effect of the transducer’s surface pre-treatment on SPR aptasensor development. Sens. Actuator. B. Chem. https://doi.org/10.1016/j.snb.2013.10.046 (2014).

    Google Scholar 

  39. Tai, W. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol. Immunol. 17, 613–620. https://doi.org/10.1038/s41423-020-0400-4 (2020).

    Google Scholar 

  40. Chaibun, T. et al. Highly sensitive and specific electrochemical biosensor for direct detection of hepatitis C virus RNA in clinical samples using DNA strand displacement. Sci. Rep. 14, 23792–10. https://doi.org/10.1038/s41598-024-74454-w (2024).

    Google Scholar 

  41. Poudyal, D. C. et al. Low-volume electrochemical sensor platform for direct detection of paraquat in drinking water. Electrochem 5, 341–353. https://doi.org/10.3390/electrochem5030022 (2024).

    Google Scholar 

  42. Armbruster, D. A. & Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29(1), 49 (2008).

    Google Scholar 

  43. Yang, L., Zhang, L., Jiao, X., Qiu, Y. & Xu, W. The electrochemical performance of reduced graphene oxide prepared from different types of natural graphites. RSC Adv. 11, 442–452. https://doi.org/10.1039/d0ra09684a (2021).

    Google Scholar 

  44. Feizi, S., Mehdizadeh, A., Hosseini, M. A., Jafari, S. A. & Ashtari, P. Reduced graphene oxide/polymethyl methacrylate (rGO/PMMA) nanocomposite for real time gamma radiation detection. Nucl. Instrum. Method. Phys. Res. 940, 72–77. https://doi.org/10.1016/j.nima.2019.06.001 (2019).

    Google Scholar 

  45. Hidayah, N. M. S. et al. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP conf. proc. https://doi.org/10.1063/1.5005764 (2017).

    Google Scholar 

  46. Ni, J., Liu, R. & Yan, C. Facile construction of poly(styrene-acrolein)/reduced graphene oxide nanocomposites via in-situ reduction and its corrosion resistance properties in waterborne acrylic resin coating. Chem. Phys. Lett. 772, 138570. https://doi.org/10.1016/j.cplett.2021.138570 (2021).

    Google Scholar 

  47. Khan, M. U. & Shaida, M. A. Reduction mechanism of graphene oxide including various parameters affecting the C/O ratio. Mater. Today Commun. 36, 106577. https://doi.org/10.1016/j.mtcomm.2023.106577 (2023).

    Google Scholar 

  48. Lavín, Á. et al. On the determination of uncertainty and limit of detection in label-free biosensors. Sensors 18, 2038. https://doi.org/10.3390/s18072038 (2018).

    Google Scholar 

  49. Machera, S. J., Niedziółka-Jönsson, J. & Szot-Karpińska, K. Phage-based sensors in medicine: A review. Chemosensors 8, 61. https://doi.org/10.3390/chemosensors8030061 (2020).

    Google Scholar 

  50. Yuan, J. et al. Truncated M13 phage for smart detection of E. coli under dark field. J. nanobiotechnol. https://doi.org/10.1186/s12951-024-02881-y (2024).

    Google Scholar 

  51. Aslan, B. C. et al. Bacteriophage-gated optical sensor for bacteria detection. Anal. Chem. (Washington) https://doi.org/10.1021/acs.analchem.5c00780 (2025).

    Google Scholar 

  52. Miranda, O. R. et al. Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J. Am. Chem. Soc. 133, 9650–9653. https://doi.org/10.1021/ja2021729 (2011).

    Google Scholar 

  53. Jiang, C., Mu, X., Du, B. & Tong, Z. A review of electrochemical biosensor application in the detection of the SARS-COV-2. Micro. Nano. Lett. 17, 49–58. https://doi.org/10.1049/mna2.12101 (2022).

    Google Scholar 

  54. Patel, S. K. et al. Recent advances in biosensors for detection of COVID-19 and other viruses. RBME 16, 1–16. https://doi.org/10.1109/RBME.2022.3212038 (2023).

    Google Scholar 

  55. Lee, D. Y. et al. Analysis of commercial fetal bovine serum (FBS) and its substitutes in the development of cultured meat. Food Res. Int. 174, 113617. https://doi.org/10.1016/j.foodres.2023.113617 (2023).

    Google Scholar 

  56. Arain, M. A. et al. A review on camel milk composition, techno- functional properties and processing constraints. Food Sci. Anim. Res. 44, 739–757. https://doi.org/10.5851/kosfa.2023.e18 (2024).

    Google Scholar 

  57. Ke, Z. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588, 498–502. https://doi.org/10.1038/s41586-020-2665-2 (2020).

    Google Scholar 

  58. Laue, M. et al. Morphometry of SARS-CoV and SARS-CoV-2 particles in ultrathin plastic sections of infected Vero cell cultures. Sci. Rep. 11, 3515. https://doi.org/10.1038/s41598-021-82852-7 (2021).

    Google Scholar 

  59. Kyosei, Y. et al. Ultrasensitive detection of SARS-CoV-2 spike proteins using the Thio-NAD cycling reaction: A preliminary study before clinical trials. Microorganisms 9, 2214. https://doi.org/10.3390/microorganisms9112214 (2021).

    Google Scholar 

  60. Acer, P. T., Kelly, L. M., Lover, A. A. & Butler, C. S. Quantifying the relationship between SARS-CoV-2 wastewater concentrations and building-level COVID-19 prevalence at an isolation residence using a passive sampling approach. medRxiv https://doi.org/10.1101/2022.04.07.22273534 (2022).

    Google Scholar 

  61. Sharma, P. K. et al. Ultrasensitive and reusable graphene oxide-modified double-interdigitated capacitive (DIDC) sensing chip for detecting SARS-CoV-2. ACS Sensor. 6, 3468–3476. https://doi.org/10.1021/acssensors.1c01437 (2021).

    Google Scholar 

  62. Sharma, P. K. et al. Ultrasensitive probeless capacitive biosensor for amyloid beta (Aβ1-42) detection in human plasma using interdigitated electrodes. Biosensor. Bioelectron. 212, 114365. https://doi.org/10.1016/j.bios.2022.114365 (2022).

    Google Scholar 

  63. Verma, M. K. et al. Rapid diagnostic methods for SARS-CoV-2 (COVID-19) detection: An evidence-based report. J. med. Life. https://doi.org/10.25122/jml-2021-0168 (2021).

    Google Scholar 

  64. Huang, L. et al. Capacitive biosensors for label-free and ultrasensitive detection of biomarkers. Talanta 266, 124951. https://doi.org/10.1016/j.talanta.2023.124951 (2024).

    Google Scholar 

  65. Torres, M. D. T., de Araujo, W. R., de Lima, L. F., Ferreira, A. L. & de la Fuente-Nunez, C. Low-cost biosensor for rapid detection of SARS-CoV-2 at the point of care. Matter 4, 2403–2416. https://doi.org/10.1016/j.matt.2021.05.003 (2021).

    Google Scholar 

  66. Fabiani, L. et al. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosensor. Bioelectron. 171, 112686. https://doi.org/10.1016/j.bios.2020.112686 (2021).

    Google Scholar 

  67. Rahmati, Z., Roushani, M., Hosseini, H. & Choobin, H. Electrochemical immunosensor with Cu2O nanocube coating for detection of SARS-CoV-2 spike protein. Microchim. Acta. 188, 105. https://doi.org/10.1007/s00604-021-04762-9 (2021).

    Google Scholar 

  68. Ali, M. A. et al. An advanced healthcare sensing platform for direct detection of viral proteins in seconds at femtomolar concentrations via aerosol jet 3D-printed nano and biomaterials. Adv. Mater. Interfac. https://doi.org/10.1002/admi.202400005 (2024).

    Google Scholar 

  69. Yakoh, A. et al. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosensor. Bioelectron. 176, 112912. https://doi.org/10.1016/j.bios.2020.112912 (2021).

    Google Scholar 

  70. Zhang, Z. et al. High‐affinity dimeric aptamers enable the rapid electrochemical detection of wild‐type and B.1.1.7 SARS‐CoV‐2 in unprocessed saliva. Angew. Chem. Int. Edit. https://doi.org/10.1002/anie.202110819 (2021).

    Google Scholar 

  71. Rahmati, Z., Roushani, M., Hosseini, H. & Choobin, H. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH)2 nanorods arrays as a high-performance surface substrate. Bioelectrochemistry 146, 108106. https://doi.org/10.1016/j.bioelechem.2022.108106 (2022).

    Google Scholar 

  72. Idili, A., Parolo, C., Alvarez-Diduk, R. & Merkoçi, A. Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS Sensor. 6, 3093–3101. https://doi.org/10.1021/acssensors.1c01222 (2021).

    Google Scholar 

Download references