References
-
El-Elimat, T. et al. Freshwater fungi as a source of chemical diversity: A review. J. Nat. Prod. 84, 464–488 (2021).
-
Tsui, C. K. M., Hyde, K. D. & Hodgkiss, I. J. Biodiversity of fungi on submerged wood in freshwater streams. Biodivers. Conserv. 10, 215–228 (2001).
-
Shearer, C. A. et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 16, 49–67 (2007).
-
Goh, T. K. & Hyde, K. D. Biodiversity of freshwater fungi. J. Ind. Microbiol. Biotechnol. 17, 328–345 (1996).
-
Gönczöl, J. & Révay, Á. Aquatic hyphomycetes and other water-borne fungi in Hungary. Czech Mycol. 63, 133–151 (2011).
-
Roy, A., Ahuja, S. & Garg, S. Fungal secondary metabolites: Biological activity and potential applications. Recent. Trends Mycol. Res. 1, 159–188 (2021).
-
Shankar, A. et al. Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. Appl. Microbiol. Biotechnol. 106, 3465–3488 (2022).
-
Bills, G. F. & Gloer, J. B. Biologically active secondary metabolites from the fungi. Microbiol. Spectr. 4, 101128 (2016).
-
Keller, N. P. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).
-
Rateb, M. E. & Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 28, 290–344 (2011).
-
Almutairi, F. A. & Edrada-Ebel, R. A. Fungal metabolites: A promising source for anti-biofilm compounds. In Antibiofilm Strategies: From Novel Drugs to Alternative Therapies (eds. Donelli, G.). 1–28 (Springer, 2020).
-
Martínez, L. R. & Fries, B. C. Fungal biofilms: Relevance in the setting of human disease. Curr. Fungal Infect. Rep. 4, 266–275 (2010).
-
Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).
-
Kırmusaoğlu, S. Biofilm and screening antibiofilm activity of agents. Antimicrobials, antibiotic resistance. Antibiofilm Strateg. Activ. Methods 99 (2019).
-
Ventola, C. L. The antibiotic resistance crisis: Causes and threats. P T. 40, 277–283 (2015).
-
Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).
-
O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Review on Antimicrobial Resistance (2016).
-
Alves, V., Zamith-Miranda, D., Frases, S. & Nosanchuk, J. D. Fungal metabolomics: A comprehensive approach to understanding pathogenesis in humans and identifying potential therapeutics. J. Fungi. 11, 93 (2025).
-
Wolfender, J. L., Nuzillard, J. M., van der Hooft, J. J. J., Renault, J. H. & Bertrand, S. Accelerating metabolite identification in natural product research: Toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal. Chem. 91, 704–742 (2018).
-
Hoffmann, T., Krug, D., Hüttel, S. & Müller, R. Improving natural products identification through targeted LC–MS/MS in an untargeted secondary metabolomics workflow. Anal. Chem. 86, 10780–10788 (2014).
-
Boonmee, S. et al. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 111, 1–335 (2021).
-
Krauss, G. J. et al. Fungi in freshwaters: Ecology, physiology and biochemical potential. FEMS Microbiol. Rev. 35, 620–651 (2011).
-
Kırmusaoğlu, S. Biofilm and screening antibiofilm activity of agents. In Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods. 99 (2019).
-
Divya, K. S., Murthy, S. M. & Jogaiah, S. Ecological studies of fungal biodiversity in freshwater and their broad-spectrum applications. In Biocontrol Agents and Secondary Metabolites. 631–648 (Woodhead Publishing, 2021).
-
Hu, D., Cai, L., Chen, H., Bahkali, A. H. & Hyde, K. D. Fungal diversity on submerged wood in a tropical stream and an artificial lake. Biodivers. Conserv. 19, 3799–3808 (2010).
-
Kodsueb, R., Lumyong, S., McKenzie, E. H. C., Bahkali, A. H. & Hyde, K. D. Relationships between terrestrial and freshwater lignicolous fungi. Fungal Ecol. 19, 155–168 (2016).
-
Aly, A. H., Debbab, A. & Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 90, 1829–1845 (2011).
-
Hertweck, C. The biosynthetic logic of polyketide diversity. Angew Chem. Int. Ed. 48, 4688–4716 (2009).
-
Jiang, T., Zhang, P., Chen, S. & Li, G. Marine natural products and their synthetic derivatives for cancer therapy. In Alternative and Complementary Therapies for Cancer: Integrative Approaches and Discovery of Conventional Drugs (eds Jiang, T. & Li, G.). 613–643 (Springer, 2010).
-
Carroll, A. R. et al. Marine natural products highlight polyketide and alkaloid diversity with antimicrobial potential. Nat. Prod. Rep. 37, 175–223 (2020).
-
Brakhage, A. A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11, 21–32 (2013).
-
Lim, F. Y. & Keller, N. P. Spatial and temporal control of fungal natural product synthesis. Nat. Prod. Rep. 31, 1277–1286 (2014).
-
Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).
-
Ciofu, O., Rojo-Molinero, E., Macià, M. D. & Oliver, A. Antibiotic treatment of biofilm infections. APMIS 125, 304–319 (2017).
-
Gilbert, P., McBain, A. J. & Rickard, A. H. Formation of microbial biofilm in hygienic situations: A problem of control. Int. Biodeterior. Biodegrad. 51, 245–248 (2003).
-
Brackman, G. & Coenye, T. Quorum sensing inhibitors as antibiofilm agents. Curr. Pharm. Des. 21, 5–11 (2015).
-
Blackwell, H. E. & Fuqua, C. Introduction to bacterial signals and chemical communication. Chem. Rev. 111, 1–3 (2011).
-
Sparg, S. G., Light, M. E. & Van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219–243 (2004).
-
Zhou, K. et al. Natural phytochemical-based strategies for antibiofilm applications. Chin. Med. 20, 96 (2025).
-
Vurro, M., Boari, A., Evidente, A. Andolfi, A. & Zermane, N. Natural metabolites for parasitic weed management. Pest Manag. Sci. 65, 566–571 (2009).
-
Masalha, M., Rayan, M., Adawi, A., Abdallah, Z. & Rayan, A. Antimicrobial activity of glucosinolate-derived isothiocyanates from cruciferous vegetables. Foods 7, 93 (2018).
-
Pearce, A. N. et al. Distomadine B, a quinoline alkaloid with antimicrobial activity from marine sponges. J. Nat. Prod. 66, 112–115 (2003).
-
Prinsep, M. R. Agelasidines and agelasines: Antimicrobial diterpenoids from marine sponges. Nat. Prod. Rep. 20, 79–91 (2003).
-
Kwon, Y. et al. Antimicrobial and cytotoxic cyclic peptides of the Phakellistatin family from marine sponges. Mar. Drugs. 16, 325 (2018).
-
Arihara, S. et al. Sugikurojins A–C, antimicrobial polyketides from Polyporus spp. Chem. Pharm. Bull. 52, 815–817 (2004).
-
Lim, S. H. et al. Prenylated isoflavonoids with antibacterial properties from Erythrina spp. J. Nat. Prod. 84, 1450–1458 (2021).
-
Chen, X. et al. Septacidin-type metabolites with antibacterial activity from actinomycetes. Front. Microbiol. 13, 943211 (2022).
-
Raveh, A. & Carmeli, S. Antimicrobial ambiguines and isonitrile alkaloids from cyanobacteria. J. Nat. Prod. 70, 196–201 (2007).
-
Yan, H. et al. Hovenia-derived flavonoids with antibacterial potential. Molecules 27, 1593 (2022).
-
Ruiu, L. et al. Bachitrocin C, an antibacterial metabolite from marine bacteria. Mar. Drugs. 11, 2300–2311 (2013).
-
Rehman, S. U. et al. In-vitro antimicrobial analysis of aqueous methanolic extracts and crude saponins isolated from leaves and roots of Sarcococca Saligna. Pak J. Agric. Res. 32, 268–274 (2019).
-
Soni, S. et al. Spirilloxanthin and related carotenoids inhibit Staphylococcus aureus biofilms. Biofouling 41, 32–44 (2025).
-
Abd Ghafar, S. Z. et al. Identification of metabolites from Halamphora sp. and their correlation with quorum-sensing inhibitory activity via UHPLC–ESI–MS/MS-based metabolomics and molecular networking. Chem. Biodivers. 22, e202402282 (2025).
-
Bisht, G. et al. Applications of red pigments from the psychrophilic Rhodonellum psychrophilum GL8 in health, food and antimicrobial finishes on textiles. Process. Biochem. 94, 15–29 (2020).
-
Júnior, A. C. V. et al. Antibiofilm and anti-candidal activities of the extract of the marine sponge Agelas dispar. Mycopathologia 186, 819–832 (2021).
-
Tenea, G. N. et al. Exometabolite-based antimicrobial formulations from lactic acid bacteria as a multi-target strategy against multidrug-resistant Escherichia coli. Antibiotics 14, 851 (2025).
-
Nishinarizki, R. et al. Spiroleucidine-type metabolites with anti-biofilm activity. BMC Complement. Med. Ther. 23, 215 (2023).
-
Shah, R. et al. Nodulisporic acid family metabolites affect quorum sensing and oxidative stress responses. Mycology 16, 77–90 (2025).
-
Duan, X. et al. Betaine as an antimicrobial and protein anti-adhesion molecule. Food Chem. 330, 127267 (2020).
-
Jamison, M. T. et al. Bengamides: Potent antibacterial natural products. J. Med. Chem. 62, 12162–12174 (2019).
-
Correa-Barbosa, J. et al. Aspidocarpine-type alkaloids: Antimicrobial evaluation and Docking analysis. J. Biomol. Struct. Dyn. 43, 1121–1132 (2025).
-
Gould, S. J. & Cone, M. A. Cyanocycline B: An antimicrobial alkaloid from Streptomyces. J. Antibiot. 46, 999–1006 (1993).
-
Reddy, P. et al. Jantithrem G, an antimicrobial tremorgenic metabolite. Tetrahedron 75, 130482 (2019).
-
Dikmen, M. et al. Chrysosporide: Antimicrobial metabolites from basidiomycetes. J. Antibiot. 73, 489–497 (2020).
-
Kunze, B. et al. Ajudazol A: Respiratory chain inhibitor with antibacterial activity. J. Antibiot. 57, 201–207 (2004).
-
Tammam, M. A. et al. Plakinamine F: Marine steroidal alkaloid with antimicrobial properties. Mar. Drugs. 23, 118 (2025).
-
Manjal, S. K. et al. Calycinathine: An antimicrobial pyrrolidone derivative from plants. Nat. Prod. Commun. 15, 1934578 (2020).
-
Ikeda, Y. et al. Triedimycins: Triene β-lactone antibiotics from actinomycetes. J. Antibiot. 44, 1047–1054 (1991).
-
Prajapati, N. D. & Jaiswal, Y. Basellasaponin A: Biological evaluation of triterpenoid saponins. Indian J. Nat. Prod. Resour. 5, 45–52 (2014).
-
Jurek, J., Scheuer, P. J. & Kelly-Borges, M. Lokysterolamine A: A marine steroidal alkaloid with antimicrobial activity. J. Nat. Prod. 57, 1040–1045 (1994).
-
Matulja, D. et al. Granulatamides from Gorgonian corals with antibacterial activity. Mar. Drugs. 17, 510 (2019).
-
Ha, T. M. et al. Epipachysamines: Antimicrobial alkaloids from fungal sources. J. Antibiot. 78, 55–63 (2025).
-
Abdullah, S. & Gobilik, J. Antifungal phytochemical compounds of Cynodon dactylon and their effects on Ganoderma boninense. Am. -Eurasian J. Sustain. Agric. 8, 22–28 (2014).
-
Khruengsai, S., Sripahco, T., Kittakoop, P. & Pripdeevech, P. Secondary metabolites of Minutisphaera thailandensis and Hongkongmyces kokensis revealed by LC–QTOF–MS and their antimicrobial and cytotoxic activities. Sci. Rep. 15, 41213 (2025).
