Antibacterial bionanocomposite hydrogel based on hydroxyethyl cellulose, poly(vinyl alcohol), and montmorillonite clay as a scaffold for bone tissue engineering application

antibacterial-bionanocomposite-hydrogel-based-on-hydroxyethyl-cellulose,-poly(vinyl-alcohol),-and-montmorillonite-clay-as-a-scaffold-for-bone-tissue-engineering-application
Antibacterial bionanocomposite hydrogel based on hydroxyethyl cellulose, poly(vinyl alcohol), and montmorillonite clay as a scaffold for bone tissue engineering application
  • Alonzo, M. et al. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr. Opin. Biomedical Eng. 17, 100248 (2021).

    Google Scholar 

  • Manzini, B. M. et al. Advances in bone tissue engineering: A fundamental review. J. Biosci. 46, 1–18 (2021).

    Google Scholar 

  • Perić Kačarević, Ž. et al. An introduction to bone tissue engineering. Int. J. Artif. Organs. 43 (2), 69–86 (2020).

    Google Scholar 

  • Zare, S. et al. Ciprofloxacin-loaded chitosan-based nanocomposite hydrogel containing silica nanoparticles as a scaffold for bone tissue engineering application. Carbohydr. Polym. Technol. Appl. 7, 100493 (2024).

    Google Scholar 

  • Selim, M. et al. Enhancing 3D scaffold performance for bone tissue engineering: A comprehensive review of modification and functionalization strategies. J. Science: Adv. Mater. Devices. 9 (4), 100806 (2024).

    Google Scholar 

  • Khan, M. U. A. et al. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies–a comprehensive review. Biomed. Mater. 19 (5), 052005 (2024).

    Google Scholar 

  • Liu, J. et al. Hydrogel scaffolds in bone regeneration: their promising roles in angiogenesis. Front. Pharmacol. 14, 1050954 (2023).

    Google Scholar 

  • Khan, M. U. A. et al. Development of porous, antibacterial and biocompatible GO/n-HAp/bacterial cellulose/β-glucan biocomposite scaffold for bone tissue engineering. Arab. J. Chem. 14 (2), 102924 (2021).

    Google Scholar 

  • Patel, A. et al. Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Acta Biomater. 112, 262–273 (2020).

    Google Scholar 

  • Du, C. & Huang, W. Progress and prospects of nanocomposite hydrogels in bone tissue engineering. Nanocomposites 8 (1), 102–124 (2022).

    Google Scholar 

  • Allen, N. B. et al. 3D-bioprinted GelMA-gelatin-hydroxyapatite osteoblast-laden composite hydrogels for bone tissue engineering. Bioprinting 26, e00196 (2022).

    Google Scholar 

  • Derakhshankhah, H. et al. Electro-conductive silica nanoparticles-incorporated hydrogel based on alginate as a biomimetic scaffold for bone tissue engineering application. Int. J. Polym. Mater. Polym. Biomaterials. 73 (4), 266–278 (2024).

    Google Scholar 

  • Abbasian, M. et al. Scaffolding polymeric biomaterials: are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 134, 673–694 (2019).

    Google Scholar 

  • Murugan, D. et al. Superparamagnetic freeze-thawed PVA hydrogel for applications in tissue engineering, drug delivery and bioimaging. Colloids Surf., A. 690, 133790 (2024).

    Google Scholar 

  • Isaac, A. H. et al. Impact of PEG sensitization on the efficacy of PEG hydrogel-mediated tissue engineering. Nat. Commun. 15 (1), 3283 (2024).

    Google Scholar 

  • Arkaban, H. et al. Polyacrylic acid nanoplatforms: antimicrobial, tissue engineering, and cancer theranostic applications. Polymers 14 (6), 1259 (2022).

    Google Scholar 

  • Abar, E. S. et al. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int. J. Biol. Macromol. 254, 127556 (2024).

    Google Scholar 

  • Samadi, S., Jaymand, M. & Rahimpour, F. Bioinspired electroconductive and antibacterial nanocomposite hydrogel composed of hyaluronic acid, aniline tetramer and clay as a scaffold for bone tissue engineering application. Int. J. Biol. Macromol., 332 (2), 148598 (2025).

  • Abdi, G. et al. Tragacanth gum-based hydrogels for drug delivery and tissue engineering applications. Front. Mater. 11, 1296399 (2024).

    Google Scholar 

  • Chen, X. et al. Injectable self-healing oxidized starch/gelatin hybrid hydrogel for preventing aseptic loosening of bone tissue engineering. ACS Appl. Mater. Interfaces. 16 (5), 5368–5381 (2024).

    Google Scholar 

  • Torgal, S., Subramani, G. & Manian, R. Comprehensive insights into Chitosan hydrogels: from crosslinking and characterization to immunomodulation, Microbiome interactions and biomedical uses. Biomass Convers. Biorefinery. 15 (9), 13191–13226 (2025).

    Google Scholar 

  • Roshanbinfar, K. et al. Enhancing biofabrication: Shrink-resistant collagen-hyaluronan composite hydrogel for tissue engineering and 3D Bioprinting applications. Biomaterials 318, 123174 (2025).

    Google Scholar 

  • Zare, S. et al. Thermal-and radiation-sensitive hydrogel based on hydroxyethyl cellulose and manganese dioxide nanoparticles for synergistic chemoradiotherapy of breast cancer. Carbohydr. Polym. Technol. Appl. 6, 100394 (2023).

    Google Scholar 

  • Chen, C., Xi, Y. & Weng, Y. Recent advances in cellulose-based hydrogels for tissue engineering applications. Polymers 14 (16), 3335 (2022).

    Google Scholar 

  • Prasathkumar, M., George, A. & Sadhasivam, S. Influence of Chitosan and hydroxyethyl cellulose modifications towards the design of cross-linked double networks hydrogel for diabetic wound healing. Int. J. Biol. Macromol. 265, 130851 (2024).

    Google Scholar 

  • Zhou, Y. et al. Oxidized hydroxypropyl cellulose/carboxymethyl Chitosan hydrogels permit pH-responsive, targeted drug release. Carbohydr. Polym. 300, 120213 (2023).

    Google Scholar 

  • Jadbabaei, S. et al. Preparation and characterization of sodium alginate–PVA polymeric scaffolds by electrospinning method for skin tissue engineering applications. RSC Adv. 11 (49), 30674–30688 (2021).

    Google Scholar 

  • Barbon, S. et al. Enhanced Biomechanical properties of Polyvinyl alcohol-based hybrid scaffolds for cartilage tissue engineering. Processes 9 (5), 730 (2021).

    Google Scholar 

  • Bi, S. et al. The toughness chitosan-PVA double network hydrogel based on alkali solution system and hydrogen bonding for tissue engineering applications. Int. J. Biol. Macromol. 146, 99–109 (2020).

    Google Scholar 

  • Dolati, M. et al. Multi-stimuli-responsive starch/MnO2 microparticles hydrogel for synergistic chemoradiotherapy of breast cancer. Int. J. Polym. Mater. Polym. Biomaterials. 73 (9), 723–735 (2024).

    Google Scholar 

  • Huang, S. et al. Nanocomposite hydrogels for biomedical applications. Bioeng. Translational Med. 7 (3), e10315 (2022).

    Google Scholar 

  • Asdi, M. H. et al. Morphological, microstructural, mechanical, and electrochemical optimization of a novel Mg–2Ca–1Mn–1 Sr alloy by P ion implantation for orthopedic implants. Mater. Today Commun. 37, 107039 (2023).

    Google Scholar 

  • Hwang, H. S. & Lee, C. S. Nanoclay-Composite Hydrogels Bone Tissue Eng. Gels, 10(8): 513. (2024).

    Google Scholar 

  • Mohd, S. S., Abdullah, M. A. A., Mat, K. A. & Amin Gellan gum/clay hydrogels for tissue engineering application: Mechanical, thermal behavior, cell viability, and antibacterial properties. J. Bioactive Compatible Polym. 31 (6), 648–666 (2016).

    Google Scholar 

  • Hasany, M. et al. Combinatorial screening of nanoclay-reinforced hydrogels: a glimpse of the holy Grail in orthopedic stem cell therapy? ACS Appl. Mater. Interfaces. 10 (41), 34924–34941 (2018).

    Google Scholar 

  • Abduljauwad, S. N., Habib, T. & Ur-Rehman, H. Clay microparticles for the enhancement of bone regeneration: in vitro studies. Histochem. Cell Biol. 160 (1), 39–49 (2023).

    Google Scholar 

  • Cui, Z. K. et al. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat. Commun. 10 (1), 3523 (2019).

    Google Scholar 

  • Olad, A. & Azhar, F. F. The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceram. Int. 40 (7), 10061–10072 (2014).

    Google Scholar 

  • Mieszawska, A. J. et al. Clay enriched silk biomaterials for bone formation. Acta Biomater. 7 (8), 3036–3041 (2011).

    Google Scholar 

  • Tao, L. et al. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Adv. 7 (85), 54100–54110 (2017).

    Google Scholar 

  • Mohan, A. et al. Polyhydroxybutyrate-based nanocomposites for bone tissue engineering. Pharmaceuticals 14 (11), 1163 (2021).

    Google Scholar 

  • Elçin, Y. M., Dixit, V. & Gitnick, G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif. Organs. 25 (7), 558–565 (2001).

    Google Scholar 

  • Zhang, Y. et al. Advancements in hydrogel-based drug sustained release systems for bone tissue engineering. Front. Pharmacol. 11, 622 (2020).

    Google Scholar 

  • Najafian, S. et al. Extracellular matrix-mimetic electrically conductive nanofibrous scaffolds based on Polyaniline-grafted tragacanth gum and Poly (vinyl alcohol) for skin tissue engineering application. Int. J. Biol. Macromol. 249, 126041 (2023).

    Google Scholar 

  • Sun, J. et al. Characterization of the degradation products of biodegradable and traditional plastics on UV irradiation and mechanical abrasion. Sci. Total Environ. 909, 168618 (2024).

    Google Scholar 

  • Rajaei, M. et al. Chitosan/agarose/graphene oxide nanohydrogel as drug delivery system of 5-fluorouracil in breast cancer therapy. J. Drug Deliv. Sci. Technol. 82, 104307 (2023).

    Google Scholar 

  • Utech, S. & Boccaccini, A. R. A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J. Mater. Sci. 51, 271–310 (2016).

    Google Scholar 

  • Patel, D. K. & Lim, K. T. Biomimetic polymer-based engineered scaffolds for improved stem cell function. Materials 12 (18), 2950 (2019).

    Google Scholar 

  • Krajišnik, D., Uskoković-Marković, S. & Daković, A. Chitosan–Clay mineral nanocomposites with antibacterial activity for biomedical application: advantages and future perspectives. Int. J. Mol. Sci. 25 (19), 10377 (2024).

    Google Scholar 

  • Giannakas, A. E. et al. Nanoclay and polystyrene type efficiency on the development of polystyrene/montmorillonite/oregano oil antioxidant active packaging nanocomposite films. Appl. Sci. 11 (20), 9364 (2021).

    Google Scholar 

  • Bassand, C. et al. How agarose gels surrounding PLGA implants limit swelling and slow down drug release. J. Controlled Release. 343, 255–266 (2022).

    Google Scholar 

  • Díaz-Guerrero, A. M. et al. Modelling of acetaminophen release from hydroxyethylcellulose/polyacrylamide hydrogel. Mater. Res. Express. 8 (1), 015310 (2021).

    Google Scholar 

  • Ma, Z. et al. Synergistic crosslinking effect of hydroxyethyl cellulose and montmorillonite on the improvement of mechanical and electrochemical properties of Polyvinyl alcohol hydrogel. Mater. Today Chem. 37, 101996 (2024).

    Google Scholar 

  • Oliver-Cervelló, L. et al. Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering. Front. Bioeng. Biotechnol. 11, 1192436 (2023).

    Google Scholar 

  • Koushik, T. M., Miller, C. M. & Antunes, E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv. Healthc. Mater. 12 (9), 2202766 (2023).

    Google Scholar 

  • Alvandi, H. et al. Incorporation of Aloe Vera and green synthesized ZnO nanoparticles into the chitosan/PVA nanocomposite hydrogel for wound dressing application. Polym. Bull. 81 (5), 4123–4148 (2024).

    Google Scholar 

  • Dash, S. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems (Acta Pol Pharm, 2010).

  • García-Villén, F. et al. Wound healing activity of nanoclay/spring water hydrogels. Pharmaceutics 12 (5), 467 (2020).

    Google Scholar 

  • Zhang, W. et al. Construction of artificial periosteum with methacrylamide gelatin hydrogel-wharton’s jelly based on stem cell recruitment and its application in bone tissue engineering. Mater. Today Bio. 18, 100528 (2023).

    Google Scholar 

  • Yang, R. et al. In vitro and in vivo evaluation of hydrogel-based scaffold for bone tissue engineering application. Arab. J. Chem. 16 (7), 104799 (2023).

    Google Scholar 

  • Zhang, Q. et al. Graphene oxide modified sodium alginate/polyethylene glycol phase change material hydrogel scaffold composite with photothermal temperature control for potential bone tissue regeneration. J. Mater. Res. Technol. 30, 2446–2457 (2024).

    Google Scholar 

  • Ferjaoui, Z. et al. Enhancing osteogenic potential in bone tissue engineering: optimizing pore size in alginate–gelatin composite hydrogels. Adv. Eng. Mater. 26 (13), 2400247 (2024).

    Google Scholar 

  • Barrera Bernal, J. L. et al. Synthesis of Hydroxyapatite-Gelatin composite hydrogel for bone tissue application. Gels 11 (8), 630 (2025).

    Google Scholar 

  • Li, F. et al. Alginate/Gelatin hydrogel scaffold containing nCeO2 as a potential osteogenic nanomaterial for bone tissue engineering. Int. J. Nanomed. 17, 6561 (2022).

    Google Scholar 

  • Qu, L. et al. Metformin-loaded nanospheres-laden photocrosslinkable gelatin hydrogel for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 116, 104293 (2021).

    Google Scholar 

  • Mohammadpour, M. et al. Fabrication and characterization of nanocomposite hydrogel based on alginate/nano-hydroxyapatite loaded with Linum usitatissimum extract as a bone tissue engineering scaffold. Mar. Drugs. 20 (1), 20 (2021).

    Google Scholar