Data availability
Data that supports the findings of this study are available within the article and from the corresponding author upon request.
References
-
Di Ciaula, A. et al. Bile acid physiology. Ann. Hepatol. 16, S4–S14. https://doi.org/10.5604/01.3001.0010.5493 (2017).
-
di Gregorio, M. C., Cautela, J. & Galantini, L. Physiology and physical chemistry of bile acids. Int. J. Mol. Sci. 22, 1780. https://doi.org/10.3390/ijms22041780 (2021).
-
Peng, Y. L. et al. Effects of bile acids on the growth, composition and metabolism of gut bacteria. Npj Biofilms Microbiomes. 10, 112. https://doi.org/10.1038/s41522-024-00566-w (2024).
-
Sannasiddappa, T. H., Lund, P. A. & Clarke, S. R. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front. Microbiol. 8, 1581. https://doi.org/10.3389/fmicb.2017.01581 (2017).
-
Begley, M., Gahan, C. G. M. & Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29, 625–651. https://doi.org/10.1016/j.femsre.2004.09.003 (2005).
-
Merritt, M. E. & Donaldson, J. R. Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J. Med. Microbiol. 58, 1533–1541. https://doi.org/10.1099/jmm.0.014092-0 (2009).
-
Akbari, H. et al. Bile compounds are effective inducer of efflux pump-mediated antimicrobial resistance among gram-negative bacteria. Biologia 80, 1443–1456. https://doi.org/10.1007/s11756-025-01928-1 (2025).
-
Collins, S. L., Stine, J. G., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236–247. https://doi.org/10.1038/s41579-022-00805-x (2023).
-
Phelan, J. P., Reen, F. J., Caparros-Martin, J. A., O’Connor, R. & O’Gara, F. Rethinking the bile acid/gut microbiome axis in cancer. Oncotarget 8, 115736–115747. https://doi.org/10.18632/oncotarget.22803 (2017).
-
Li, Z. et al. Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). Int. J. Oncol. 66, 24 https://doi.org/10.3892/ijo.2025.5730 (2025).
-
Kouhzad, M. et al. Carcinogenic and anticancer activities of microbiota-derived secondary bile acids. Front. Oncol. 15, 1514872. https://doi.org/10.3389/fonc.2025.1514872 (2025).
-
Wang, Q. C. et al. Circulating bile acid profiles characteristics and the potential predictive role in clear cell renal cell carcinoma progression. BMC Nephrol. 26, 206. https://doi.org/10.1186/s12882-025-04142-y (2025).
-
Varanasi, S. K. et al. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer. Science 387, 192–201. https://doi.org/10.1126/science.adl4100 (2025).
-
Darmanto, A. G. et al. Beyond metabolic messengers: Bile acids and TGR5 as pharmacotherapeutic intervention for psychiatric disorders. Pharmacol. Res. 211, 107564. https://doi.org/10.1016/j.phrs.2024.107564 (2025).
-
Falcone, M. et al. Challenges in the management of chronic wound infections. J. Global Antimicrob. Resist. 26, 140–147. https://doi.org/10.1016/j.jgar.2021.05.010 (2021).
-
Mroz, M. S., Lajczak, N. K., Goggins, B. J., Keely, S. & Keely, S. J. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G378–g387. https://doi.org/10.1152/ajpgi.00435.2016 (2018).
-
Zhu, A., Li, W., Zhang, X. & Yan, X. Dietary ursodeoxycholic acid supplementation enhanced nonspecific immunity, antioxidant capacity, and anti-inflammatory-related gene expression in juvenile large yellow croaker (Larimichthys crocea). Aquaculture Rep. 41, 102698. https://doi.org/10.1016/j.aqrep.2025.102698 (2025).
-
Aleksic Sabo, V., Škorić, D., Jovanović-Šanta, S. & Knezevic, P. Exploring biofilm-related traits and bile salt efficacy as anti-biofilm agents in MDR acinetobacter baumannii. Antibiotics (Basel). 13, 880. https://doi.org/10.3390/antibiotics13090880 (2024).
-
Guillot, A. et al. Bile acid-activated macrophages promote biliary epithelial cell proliferation through integrin αvβ6 upregulation following liver injury. J. Clin. Invest. https://doi.org/10.1172/jci132305 (2021).
-
Al-Rajhi, A. M. H. et al. Phytochemical characterization of peanut oil and its ozonized form to explore biological activities in vitro. AMB Express. 15, 76. https://doi.org/10.1186/s13568-025-01849-x (2025).
-
Abdel Ghany, T. M., Ganash, M., Alawlaqi, M. M. & Al-Rajhi, A. M. H. Antioxidant antitumor, antimicrobial activities evaluation of Musa paradisiaca L. pseudostem exudate cultivated in Saudi Arabia. BioNanoScience 9, 172–178 https://doi.org/10.1007/s12668-018-0580-x (2019).
-
Alsalamah, S. A., Alghonaim, M. I., Alhejely, A., Alshammari, A. N. & Alfattah, M. A. Biological activities of Quinoa seeds extract and their effects on antioxidants of cancer cells and ultrastructure of Candida tropicalis. BioResources 20, 3612–3627. https://doi.org/10.15376/biores.20.2.3612-3627 (2025).
-
Qanash, H. et al. Phytochemical characterization and efficacy of Artemisia judaica extract loaded Chitosan nanoparticles as inhibitors of cancer proliferation and microbial growth. Polymers 15, 391 (2023).
-
Al-Rajhi, A. M. H. et al. Anticancer, anticoagulant, antioxidant and antimicrobial activities of Thevetia Peruviana latex with molecular docking of antimicrobial and anticancer activities. Molecules 27, 3165. https://doi.org/10.3390/molecules27103165 (2022).
-
Qanash, H., Bazaid, A. S., Binsaleh, N. K., Alshammari, A. S. & Eltayeb, R. Therapeutic potential of Plantago ovata bioactive extracts obtained by supercritical fluid extraction as influenced by temperature on anti-obesity, anticancer, and antimicrobial activities. Plants 14, 1813 (2025).
-
Alsalamah, S. A. et al. Effect of UV-C radiation on chemical profile and pharmaceutical application in vitro of Aloe vera oil. AMB Express. 15, 83. https://doi.org/10.1186/s13568-025-01884-8 (2025).
-
Bakri, M. M. et al. Impact of moist heat on phytochemical constituents, anti-Helicobacter pylori, antioxidant, anti-diabetic, hemolytic and healing properties of rosemary plant extract in vitro. Waste Biomass Valoriz. 15, 4965–4979. https://doi.org/10.1007/s12649-024-02490-8 (2024).
-
Tyagi, A., Kumar, V., Joshi, N. & Dhingra, H. K. Exploring the antibacterial potential of bile salts: Inhibition of biofilm formation and cell growth in Pseudomonas aeruginosa and Staphylococcus aureus. Microbiol. Res. 15, 1269–1279 (2024).
-
Guinan, J., Villa, P. & Thangamani, S. Secondary bile acids inhibit Candida albicans growth and morphogenesis. Pathog Dis. 76, fty038 https://doi.org/10.1093/femspd/fty038 (2018).
-
Hu, D. et al. Dietary bile acids supplementation protects against Salmonella typhimurium infection via improving intestinal mucosal barrier and gut microbiota composition in broilers. J. Anim. Sci. Biotechnol. 15, 155. https://doi.org/10.1186/s40104-024-01113-5 (2024).
-
Mateus, C. et al. Evaluation of bile salts on the survival and modulation of virulence of Aliarcobacter butzleri. Antibiotics 12, 1387 (2023).
-
Nickerson, K. P. et al. Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts. Infect. Immun. 85, 10 https://doi.org/10.1128/iai.01067-16 (2017).
-
Baptissart, M. et al. Bile acids: From digestion to cancers. Biochimie 95, 504–517. https://doi.org/10.1016/j.biochi.2012.06.022 (2013).
-
Li, T. & Chiang, J. Y. Bile acid signaling in liver metabolism and diseases. J. Lipids 2012, 754067 https://doi.org/10.1155/2012/754067 (2012).
-
Roudebush, C., Catala-Valentin, A., Andl, T., Le Bras, G. F. & Andl, C. D. Activin A-mediated epithelial de-differentiation contributes to injury repair in an in vitro gastrointestinal reflux model. Cytokine 123, 154782. https://doi.org/10.1016/j.cyto.2019.154782 (2019).
-
Kydd, J. et al. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 9, 46 https://doi.org/10.3390/pharmaceutics9040046 (2017).
-
Radha Abbas Hasoon, M. & Jawad Kadhim, N. Improvement of the selectivity index (SI) and cytotoxicity activity of doxorubicin drug by Panax ginseng plant extract. Arch. Razi Inst. 76, 659–666. https://doi.org/10.22092/ari.2021.355413.1681 (2021).
-
Sarathy, J. et al. The Yin and Yang of bile acid action on tight junctions in a model colonic epithelium. Physiol. Rep. 5, e13294. https://doi.org/10.14814/phy2.13294 (2017).
-
Engin, A. In Protein Kinase-mediated Decisions Between Life and Death (eds Engin, A. B. & Engin, A) 229–258 (Springer, 2021).
-
Bernstein, H., Bernstein, C., Payne, C. M. & Dvorak, K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J. Gastroenterol. 15, 3329–3340. https://doi.org/10.3748/wjg.15.3329 (2009).
-
Huo, X. et al. Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-κB activation in benign barrett’s epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G278–286. https://doi.org/10.1152/ajpgi.00092.2011 (2011).
Acknowledgements
All authors thank Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R217), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Funding
This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R217), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
All experimental protocols were reviewed and approved by the Princess Nourah bint Abdulrahman University Institutional Review Board (PNU-IRB), Riyadh, Saudi Arabia (IRB Log Number: 25-0453). All methods were carried out in accordance with relevant institutional guidelines and national regulations governing research involving human participants. All procedures and reporting of the experimental methods followed the ARRIVE guidelines (https://arriveguidelines.org).
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Al-Rajhi, A.M.H., Alsalamah, S.A., Almotayri, A.M. et al. Antimicrobial and healing efficacy of bile salts with insights into cytotoxic activity. Sci Rep (2025). https://doi.org/10.1038/s41598-025-30294-w
-
Received:
-
Accepted:
-
Published:
-
DOI: https://doi.org/10.1038/s41598-025-30294-w
