References
-
Aumente-Maestro, C., Díez, J. & Remeseiro, B. A multi-task framework for breast cancer segmentation and classification in ultrasound imaging. Comput. Methods Programs Biomed. 260, 108540. https://doi.org/10.1016/j.cmpb.2024.108540 (2025).
-
Hosseinpour, Z., Rezaei-Tavirani, M., Akbari, M. E. & Farahani, M. Developing a gene expression classifier for breast cancer diagnosis. Med. Biol. Eng. Comput. https://doi.org/10.1007/s11517-025-03329-7 (2025).
-
Scabia, V. et al. Estrogen receptor positive breast cancers have patient specific hormone sensitivities and rely on progesterone receptor. Nat. Commun. 13, 3127. https://doi.org/10.1038/s41467-022-30898-0 (2022).
-
Gupta, A. et al. Recent advancements in nanoconstructs for the theranostics applications for triple negative breast cancer. J. Drug Deliv Sci. Technol. 93, 105401. https://doi.org/10.1016/j.jddst.2024.105401 (2024).
-
Ara, M. G., Motalleb, G., Velasco, B., Rahdar, A. & Taboada, P. Antineoplastic effect of paclitaxel-loaded polymeric nanocapsules on malignant human ovarian carcinoma cells (SKOV-3). J. Mol. Liq. 384, 122190 (2023).
-
Salimi, S. et al. Anticancer effect of Tamoxifen and Fe3O4@SiO2@Cu hybrid NPs on malignant human breast cancer cell (MCF-7). J. Mol. Liq. 429, 127570. https://doi.org/10.1016/j.molliq.2025.127570 (2025).
-
Marvalim, C., Datta, A. & Lee, S. C. Role of p53 in breast cancer progression: an insight into p53 targeted therapy. Theranostics 13, 1421–1442. https://doi.org/10.7150/thno.81847 (2023).
-
Khaleghi, M. M., Rouhi, F., Eslami, K. & Shafiee, F. Apoptosis-inducing proteins with reduced expression in breast cancer: A review Article. Biochem. Biophys. Rep. 41, 101931. https://doi.org/10.1016/j.bbrep.2025.101931 (2025).
-
Chaurasia, M., Singh, R., Sur, S. & Flora, S. J. S. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front. Pharmacol. 14 https://doi.org/10.3389/fphar.2023.1184472 (2023).
-
Alomar, O. et al. The effect of anastrozole on the lipid profile: systematic review and meta-analysis of randomized controlled trials. Clin. Ther. 44, 1214–1224. https://doi.org/10.1016/j.clinthera.2022.08.003 (2022).
-
Abubakar, M. B., Wei, K. & Gan, S. H. The influence of genetic polymorphisms on the efficacy and side effects of anastrozole in postmenopausal breast cancer patients. Pharmacogenet Genomics. 24, 575–581. https://doi.org/10.1097/fpc.0000000000000092 (2014).
-
Kabanov, A. V., Batrakova, E. V. & Alakhov, V. Y. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J. Controlled Release. 82, 189–212 (2002).
-
Alexandridis, P. Poly (ethylene oxide)/poly (propylene oxide) block copolymer surfactants. Curr. Opin. Colloid Interface Sci. 2, 478–489 (1997).
-
McClements, D. Food Emulsions: Principles, Practices, and Techniques, Third Edition. (2015).
-
Mirbahaaldin, Z. & Motalleb, G. Cytotoxic effect of hydroalcoholic extract of berberis vulgaris fruit extract on MCF-7 human breast cancer cells. Appl. Biol. 35, 119–132 (2023).
-
Soheili, M., Hashemi, M., Panahi, A. & Nosrati, R. Apoptosis induction in esophageal squamous cell carcinoma cells by hydroalcoholic extract of cuscuta epithymum. Iran. Biomed. J. 28, 282–282. https://doi.org/10.61186/ibj.25th-11th-IACRTIMSS (2024).
-
Khamisipour, G. et al. Knockdown of microRNA-29a regulates the expression of apoptosis-related genes in MCF-7 breast carcinoma cells. Mol. Clin. Oncol. 8, 362–369 (2018).
-
Mahmoud, A. S., Bakar, M. Z. A., Hamzah, H., Ahmad, T. A. T. & Noor, M. H. M. Octreotide acetate enhanced radio sensitivity and induced apoptosis in MCF7 breast cancer cell line. J. Radiat. Res. Appl. Sci. 15, 193–198 (2022).
-
Bagherian, T., Tackallou, S. H. & Mohammadgholi, A. Quantitative measurement of Bax and Bcl2 genes and protein expression in MCF7 cell-line when treated by Aloe Vera extract. Gene Rep. 23, 101123 (2021).
-
Giordano, C. et al. Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression. Oncogene 30, 4129–4140. https://doi.org/10.1038/onc.2011.124 (2011).
-
Burguin, A., Diorio, C. & Durocher, F. Breast cancer treatments: updates and new challenges. J. Pers. Med. 11, 808 (2021).
-
Nasrine, A., Mohanto, S., Narayana, S. & Ahmed, M. G. Enhanced Pharmacokinetic approach for anastrozole in macromolecule-based silk fibroin nanoparticles incorporated in situ injectables for estrogen-positive breast cancer therapy. J. Drug Target. 33 (5), 793–803 (2025). https://doi.org/10.1080/1061186X.2024.2449486.
-
ISO, I. T. S. 80004-2: 2015 Nanotechnologies—Vocabulary—Part 2: Nano-Objects. International Organization for Standardization, Geneva. https://www.iso.org/obp/ui/en/# iso:std:iso80004. (2015).
-
Cassani, M. et al. Unraveling the role of the tumor extracellular matrix to inform nanoparticle design for nanomedicine. Adv. Sci. 12, 2409898 (2025).
-
Haripriyaa, M. & Suthindhiran, K. Pharmacokinetics of nanoparticles: current knowledge, future directions and its implications in drug delivery. Future J. Pharm. Sci. 9, 113 (2023).
-
Kim, J., Cho, H., Lim, D. K., Joo, M. K. & Kim, K. Perspectives for improving the tumor targeting of nanomedicine via the EPR effect in clinical tumors. Int. J. Mol. Sci. 24, 10082 (2023).
-
Mahajan, K. & Bhattacharya, S. The advancement and Obstacles in improving the stability of nanocarriers for precision drug delivery in the field of nanomedicine. Curr. Top. Med. Chem. 24, 686–721 (2024).
-
Hersh, A. M., Alomari, S. & Tyler, B. M. Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. 23, 4153 (2022).
-
Wu, D. et al. The blood–brain barrier: Structure, regulation and drug delivery. Signal. Transduct. Target. Ther. 8, 217 (2023).
-
Adams, S. & Stapleton, P. Nanoparticles at the maternal-fetal interface. Mol. Cell. Endocrinol. 578, 112067 (2023).
-
Deng, S., Gigliobianco, M. R., Censi, R. & Di Martino, P. Polymeric nanocapsules as Nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials 10, 847 (2020).
-
Srinivasan, B. & Lloyd, M. D. Vol. 67 17931–17934 (ACS, (2024).
-
Bhavsar, D., Gajjar, J. & Sawant, K. Formulation and development of smart pH responsive mesoporous silica nanoparticles for breast cancer targeted delivery of anastrozole: in vitro and in vivo characterizations. Microporous Mesoporous Mater. 279, 107–116 (2019).
-
Varma, S., Dey, S. & Palanisamy, D. Cellular uptake pathways of nanoparticles: process of endocytosis and factors affecting their fate. Curr. Pharm. Biotechnol. 23, 679–706 (2022).
-
Roussel, S., Grenier, P., Chénard, V. & Bertrand, N. Dual-labelled nanoparticles inform on the stability of fluorescent labels in vivo. Pharmaceutics 15, 769 (2023).
-
Kari, S. et al. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis 27, 482–508 (2022).
-
Mustafa, M. et al. Apoptosis: a comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells 13, 1838 (2024).
-
Danhier, F., Feron, O. & Préat, V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release. 148, 135–146 (2010).
-
Bae, Y. H. & Park, K. 153, 198–205 (Elsevier, 2011).
-
Afarin, R., Ahmadpour, F., Hatami, M., Monjezi, S. & Igder, S. Combination of Etoposide and quercetin-loaded solid lipid nanoparticles potentiates apoptotic effects on MDA-MB-231 breast cancer cells. Heliyon. 10 (11), e31925 (2024). https://doi.org/10.1016/j.heliyon.2024.e31925.
-
Ghadge, D., Nangare, S. & Jadhav, N. Formulation, optimization, and in vitro evaluation of anastrozole-loaded nanostructured lipid carriers for improved anticancer activity. J. Drug Deliv Sci. Technol. 72, 103354 (2022).
-
Chen, R. et al. Antiproliferative effects of anastrozole on MCF–7 human breast cancer cells in vitro are significantly enhanced by combined treatment with testosterone undecanoate. Mol. Med. Rep. 12, 769–775 (2015).
-
Kesavardhana, S., Malireddi, R. S. & Kanneganti, T. D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol. 38, 567–595 (2020).
-
Wang, S. et al. Cell-in-cell death is not restricted by caspase-3 deficiency in MCF-7 cells. J. Breast Cancer. 19, 231–241 (2016).
-
Mooney, L., Al-Sakkaf, K., Brown, B. & Dobson, P. Apoptotic mechanisms in T47D and MCF-7 human breast cancer cells. Br. J. Cancer. 87, 909–917 (2002).
-
Liang, Y., Yan, C. & Schor, N. F. Apoptosis in the absence of caspase 3. Oncogene 20, 6570–6578 (2001).
-
Yang, X. H. et al. Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin-and etoposide-induced apoptosis. Cancer Res. 61, 348–354 (2001).
-
Nan, M. L. et al. Rotundic acid induces Cas3-MCF-7 cell apoptosis through the p53 pathway. Oncol. Lett. 17, 630–637 (2019).
-
Elbehairi, S. E. I., Ismail, L. A., Alfaifi, M. Y., Elshaarawy, R. F. & Hafez, H. S. Chitosan nano-vehicles as biocompatible delivering tools for a new ag (I) curcuminoid-Gboxin analog complex in cancer and inflammation therapy. Int. J. Biol. Macromol. 165, 2750–2764 (2020).
-
Tian, T. & Commentary A GSH/CB dual-controlled self-assembled nanomedicine for high-efficacy doxorubicin-resistant breast cancer therapy. Front. Pharmacol. 13, 1081912 (2022).
-
Tian, T. MCF-7 cells lack the expression of Caspase-3. Int. J. Biol. Macromol. 231, 123310 (2023).
-
Aguilar-García, I. et al. Anastrozole reduce cell proliferation and induce apoptosis in glioblastoma multiforme xenograft mouse model. Cancer Ther. 9, 655–660 (2017).
-
Hafner, A., Bulyk, M. L., Jambhekar, A. & Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell. Biol. 20, 199–210 (2019).
-
Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell. Biol. 15, 49–63 (2014).
-
Kale, J., Osterlund, E. J. & Andrews, D. W. BCL-2 family proteins: changing partners in the dance towards death. Cell. Death Differ. 25, 65–80 (2018).
-
Kawiak, A. & Kostecka, A. (s Note: MDPI stays neutral with regard to jurisdictional claims in published ….
-
Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Sci 349, 1483–1489 (2015).
-
Patil, M. R. & Bihari, A. A comprehensive study of p53 protein. J. Cell. Biochem. 123, 1891–1937 (2022).
-
Kashyap, D., Garg, V. K., Sandberg, E. N., Goel, N. & Bishayee, A. Oncogenic and tumor suppressive components of the cell cycle in breast cancer progression and prognosis. Pharmaceutics 13, 569 (2021).
-
Çilesiz, Y. & Cevik, O. Anticancer effect of the letrozole-quercetin combination mediated by FOXOs and Estrogen receptors in breast cancer cells. J. Res. Pharm. 25, 479–489 (2021).
-
Fang, L. et al. Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer. Acta Pharm. Sin B. 12, 353–363 (2022).
