Antineoplastic effect of anastrozole-loaded polymer nanocapsules on malignant human breast cancer cells (MCF-7)

antineoplastic-effect-of-anastrozole-loaded-polymer-nanocapsules-on-malignant-human-breast-cancer-cells-(mcf-7)
Antineoplastic effect of anastrozole-loaded polymer nanocapsules on malignant human breast cancer cells (MCF-7)

References

  1. Aumente-Maestro, C., Díez, J. & Remeseiro, B. A multi-task framework for breast cancer segmentation and classification in ultrasound imaging. Comput. Methods Programs Biomed. 260, 108540. https://doi.org/10.1016/j.cmpb.2024.108540 (2025).

    Google Scholar 

  2. Hosseinpour, Z., Rezaei-Tavirani, M., Akbari, M. E. & Farahani, M. Developing a gene expression classifier for breast cancer diagnosis. Med. Biol. Eng. Comput. https://doi.org/10.1007/s11517-025-03329-7 (2025).

    Google Scholar 

  3. Scabia, V. et al. Estrogen receptor positive breast cancers have patient specific hormone sensitivities and rely on progesterone receptor. Nat. Commun. 13, 3127. https://doi.org/10.1038/s41467-022-30898-0 (2022).

    Google Scholar 

  4. Gupta, A. et al. Recent advancements in nanoconstructs for the theranostics applications for triple negative breast cancer. J. Drug Deliv Sci. Technol. 93, 105401. https://doi.org/10.1016/j.jddst.2024.105401 (2024).

    Google Scholar 

  5. Ara, M. G., Motalleb, G., Velasco, B., Rahdar, A. & Taboada, P. Antineoplastic effect of paclitaxel-loaded polymeric nanocapsules on malignant human ovarian carcinoma cells (SKOV-3). J. Mol. Liq. 384, 122190 (2023).

    Google Scholar 

  6. Salimi, S. et al. Anticancer effect of Tamoxifen and Fe3O4@SiO2@Cu hybrid NPs on malignant human breast cancer cell (MCF-7). J. Mol. Liq. 429, 127570. https://doi.org/10.1016/j.molliq.2025.127570 (2025).

    Google Scholar 

  7. Marvalim, C., Datta, A. & Lee, S. C. Role of p53 in breast cancer progression: an insight into p53 targeted therapy. Theranostics 13, 1421–1442. https://doi.org/10.7150/thno.81847 (2023).

    Google Scholar 

  8. Khaleghi, M. M., Rouhi, F., Eslami, K. & Shafiee, F. Apoptosis-inducing proteins with reduced expression in breast cancer: A review Article. Biochem. Biophys. Rep. 41, 101931. https://doi.org/10.1016/j.bbrep.2025.101931 (2025).

    Google Scholar 

  9. Chaurasia, M., Singh, R., Sur, S. & Flora, S. J. S. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front. Pharmacol. 14 https://doi.org/10.3389/fphar.2023.1184472 (2023).

  10. Alomar, O. et al. The effect of anastrozole on the lipid profile: systematic review and meta-analysis of randomized controlled trials. Clin. Ther. 44, 1214–1224. https://doi.org/10.1016/j.clinthera.2022.08.003 (2022).

    Google Scholar 

  11. Abubakar, M. B., Wei, K. & Gan, S. H. The influence of genetic polymorphisms on the efficacy and side effects of anastrozole in postmenopausal breast cancer patients. Pharmacogenet Genomics. 24, 575–581. https://doi.org/10.1097/fpc.0000000000000092 (2014).

    Google Scholar 

  12. Kabanov, A. V., Batrakova, E. V. & Alakhov, V. Y. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J. Controlled Release. 82, 189–212 (2002).

    Google Scholar 

  13. Alexandridis, P. Poly (ethylene oxide)/poly (propylene oxide) block copolymer surfactants. Curr. Opin. Colloid Interface Sci. 2, 478–489 (1997).

    Google Scholar 

  14. McClements, D. Food Emulsions: Principles, Practices, and Techniques, Third Edition. (2015).

  15. Mirbahaaldin, Z. & Motalleb, G. Cytotoxic effect of hydroalcoholic extract of berberis vulgaris fruit extract on MCF-7 human breast cancer cells. Appl. Biol. 35, 119–132 (2023).

    Google Scholar 

  16. Soheili, M., Hashemi, M., Panahi, A. & Nosrati, R. Apoptosis induction in esophageal squamous cell carcinoma cells by hydroalcoholic extract of cuscuta epithymum. Iran. Biomed. J. 28, 282–282. https://doi.org/10.61186/ibj.25th-11th-IACRTIMSS (2024).

    Google Scholar 

  17. Khamisipour, G. et al. Knockdown of microRNA-29a regulates the expression of apoptosis-related genes in MCF-7 breast carcinoma cells. Mol. Clin. Oncol. 8, 362–369 (2018).

    Google Scholar 

  18. Mahmoud, A. S., Bakar, M. Z. A., Hamzah, H., Ahmad, T. A. T. & Noor, M. H. M. Octreotide acetate enhanced radio sensitivity and induced apoptosis in MCF7 breast cancer cell line. J. Radiat. Res. Appl. Sci. 15, 193–198 (2022).

    Google Scholar 

  19. Bagherian, T., Tackallou, S. H. & Mohammadgholi, A. Quantitative measurement of Bax and Bcl2 genes and protein expression in MCF7 cell-line when treated by Aloe Vera extract. Gene Rep. 23, 101123 (2021).

    Google Scholar 

  20. Giordano, C. et al. Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression. Oncogene 30, 4129–4140. https://doi.org/10.1038/onc.2011.124 (2011).

    Google Scholar 

  21. Burguin, A., Diorio, C. & Durocher, F. Breast cancer treatments: updates and new challenges. J. Pers. Med. 11, 808 (2021).

    Google Scholar 

  22. Nasrine, A., Mohanto, S., Narayana, S. & Ahmed, M. G. Enhanced Pharmacokinetic approach for anastrozole in macromolecule-based silk fibroin nanoparticles incorporated in situ injectables for estrogen-positive breast cancer therapy. J. Drug Target. 33 (5), 793–803 (2025). https://doi.org/10.1080/1061186X.2024.2449486.

  23. ISO, I. T. S. 80004-2: 2015 Nanotechnologies—Vocabulary—Part 2: Nano-Objects. International Organization for Standardization, Geneva. https://www.iso.org/obp/ui/en/# iso:std:iso80004. (2015).

  24. Cassani, M. et al. Unraveling the role of the tumor extracellular matrix to inform nanoparticle design for nanomedicine. Adv. Sci. 12, 2409898 (2025).

    Google Scholar 

  25. Haripriyaa, M. & Suthindhiran, K. Pharmacokinetics of nanoparticles: current knowledge, future directions and its implications in drug delivery. Future J. Pharm. Sci. 9, 113 (2023).

    Google Scholar 

  26. Kim, J., Cho, H., Lim, D. K., Joo, M. K. & Kim, K. Perspectives for improving the tumor targeting of nanomedicine via the EPR effect in clinical tumors. Int. J. Mol. Sci. 24, 10082 (2023).

    Google Scholar 

  27. Mahajan, K. & Bhattacharya, S. The advancement and Obstacles in improving the stability of nanocarriers for precision drug delivery in the field of nanomedicine. Curr. Top. Med. Chem. 24, 686–721 (2024).

    Google Scholar 

  28. Hersh, A. M., Alomari, S. & Tyler, B. M. Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. 23, 4153 (2022).

    Google Scholar 

  29. Wu, D. et al. The blood–brain barrier: Structure, regulation and drug delivery. Signal. Transduct. Target. Ther. 8, 217 (2023).

    Google Scholar 

  30. Adams, S. & Stapleton, P. Nanoparticles at the maternal-fetal interface. Mol. Cell. Endocrinol. 578, 112067 (2023).

    Google Scholar 

  31. Deng, S., Gigliobianco, M. R., Censi, R. & Di Martino, P. Polymeric nanocapsules as Nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials 10, 847 (2020).

    Google Scholar 

  32. Srinivasan, B. & Lloyd, M. D. Vol. 67 17931–17934 (ACS, (2024).

  33. Bhavsar, D., Gajjar, J. & Sawant, K. Formulation and development of smart pH responsive mesoporous silica nanoparticles for breast cancer targeted delivery of anastrozole: in vitro and in vivo characterizations. Microporous Mesoporous Mater. 279, 107–116 (2019).

    Google Scholar 

  34. Varma, S., Dey, S. & Palanisamy, D. Cellular uptake pathways of nanoparticles: process of endocytosis and factors affecting their fate. Curr. Pharm. Biotechnol. 23, 679–706 (2022).

    Google Scholar 

  35. Roussel, S., Grenier, P., Chénard, V. & Bertrand, N. Dual-labelled nanoparticles inform on the stability of fluorescent labels in vivo. Pharmaceutics 15, 769 (2023).

    Google Scholar 

  36. Kari, S. et al. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis 27, 482–508 (2022).

    Google Scholar 

  37. Mustafa, M. et al. Apoptosis: a comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells 13, 1838 (2024).

    Google Scholar 

  38. Danhier, F., Feron, O. & Préat, V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release. 148, 135–146 (2010).

    Google Scholar 

  39. Bae, Y. H. & Park, K. 153, 198–205 (Elsevier, 2011).

  40. Afarin, R., Ahmadpour, F., Hatami, M., Monjezi, S. & Igder, S. Combination of Etoposide and quercetin-loaded solid lipid nanoparticles potentiates apoptotic effects on MDA-MB-231 breast cancer cells. Heliyon. 10 (11), e31925 (2024). https://doi.org/10.1016/j.heliyon.2024.e31925.

  41. Ghadge, D., Nangare, S. & Jadhav, N. Formulation, optimization, and in vitro evaluation of anastrozole-loaded nanostructured lipid carriers for improved anticancer activity. J. Drug Deliv Sci. Technol. 72, 103354 (2022).

    Google Scholar 

  42. Chen, R. et al. Antiproliferative effects of anastrozole on MCF–7 human breast cancer cells in vitro are significantly enhanced by combined treatment with testosterone undecanoate. Mol. Med. Rep. 12, 769–775 (2015).

    Google Scholar 

  43. Kesavardhana, S., Malireddi, R. S. & Kanneganti, T. D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol. 38, 567–595 (2020).

    Google Scholar 

  44. Wang, S. et al. Cell-in-cell death is not restricted by caspase-3 deficiency in MCF-7 cells. J. Breast Cancer. 19, 231–241 (2016).

    Google Scholar 

  45. Mooney, L., Al-Sakkaf, K., Brown, B. & Dobson, P. Apoptotic mechanisms in T47D and MCF-7 human breast cancer cells. Br. J. Cancer. 87, 909–917 (2002).

    Google Scholar 

  46. Liang, Y., Yan, C. & Schor, N. F. Apoptosis in the absence of caspase 3. Oncogene 20, 6570–6578 (2001).

    Google Scholar 

  47. Yang, X. H. et al. Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin-and etoposide-induced apoptosis. Cancer Res. 61, 348–354 (2001).

    Google Scholar 

  48. Nan, M. L. et al. Rotundic acid induces Cas3-MCF-7 cell apoptosis through the p53 pathway. Oncol. Lett. 17, 630–637 (2019).

    Google Scholar 

  49. Elbehairi, S. E. I., Ismail, L. A., Alfaifi, M. Y., Elshaarawy, R. F. & Hafez, H. S. Chitosan nano-vehicles as biocompatible delivering tools for a new ag (I) curcuminoid-Gboxin analog complex in cancer and inflammation therapy. Int. J. Biol. Macromol. 165, 2750–2764 (2020).

    Google Scholar 

  50. Tian, T. & Commentary A GSH/CB dual-controlled self-assembled nanomedicine for high-efficacy doxorubicin-resistant breast cancer therapy. Front. Pharmacol. 13, 1081912 (2022).

    Google Scholar 

  51. Tian, T. MCF-7 cells lack the expression of Caspase-3. Int. J. Biol. Macromol. 231, 123310 (2023).

    Google Scholar 

  52. Aguilar-García, I. et al. Anastrozole reduce cell proliferation and induce apoptosis in glioblastoma multiforme xenograft mouse model. Cancer Ther. 9, 655–660 (2017).

    Google Scholar 

  53. Hafner, A., Bulyk, M. L., Jambhekar, A. & Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell. Biol. 20, 199–210 (2019).

    Google Scholar 

  54. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell. Biol. 15, 49–63 (2014).

    Google Scholar 

  55. Kale, J., Osterlund, E. J. & Andrews, D. W. BCL-2 family proteins: changing partners in the dance towards death. Cell. Death Differ. 25, 65–80 (2018).

    Google Scholar 

  56. Kawiak, A. & Kostecka, A. (s Note: MDPI stays neutral with regard to jurisdictional claims in published &#8230.

  57. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Sci 349, 1483–1489 (2015).

    Google Scholar 

  58. Patil, M. R. & Bihari, A. A comprehensive study of p53 protein. J. Cell. Biochem. 123, 1891–1937 (2022).

    Google Scholar 

  59. Kashyap, D., Garg, V. K., Sandberg, E. N., Goel, N. & Bishayee, A. Oncogenic and tumor suppressive components of the cell cycle in breast cancer progression and prognosis. Pharmaceutics 13, 569 (2021).

    Google Scholar 

  60. Çilesiz, Y. & Cevik, O. Anticancer effect of the letrozole-quercetin combination mediated by FOXOs and Estrogen receptors in breast cancer cells. J. Res. Pharm. 25, 479–489 (2021).

    Google Scholar 

  61. Fang, L. et al. Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer. Acta Pharm. Sin B. 12, 353–363 (2022).

    Google Scholar 

Download references