AsAP2 transcriptionally activates ferulate 5-hydroxylase, diverting ferulic acid metabolism toward lignin biosynthesis in Angelica sinensis.

asap2-transcriptionally-activates-ferulate-5-hydroxylase,-diverting-ferulic-acid-metabolism-toward-lignin-biosynthesis-in-angelica-sinensis.
AsAP2 transcriptionally activates ferulate 5-hydroxylase, diverting ferulic acid metabolism toward lignin biosynthesis in Angelica sinensis.

Data availability

The original datasets are presented in the Supplementary files (Supplementary data). The data from this study are available from the corresponding author, Tsan-Yu Chiu, at qiucanyu@genomics.cn.

Abbreviations

AP2:

APETALA2

F5H:

Ferulate 5-hydroxylase

PAL1 :

Phenylalanine ammonia-lyase 1

4CL :

4-Coumarate-CoA ligase

LAC :

Laccase

CO :

Constans

PHYA :

Phytochrome A

LHY :

Late elongated hypocotyl

GA2OX1 :

Gibberellin 2-oxidase 1

GASA1 :

Gibberellic acid-stimulated arabidopsis 1

GA20OX1 :

Gibberellin 20-oxidase 1

SUS6/SUS1 :

Sucrose synthase 6/1

Amy2 :

Alpha-amylase 2

INVA :

Alkaline/Neutral invertase A

AGL62 :

Agamous-like 62

SOC1 :

Uppressor of overexpression of constans 1

MADS8 :

MCM1-agamous-deficiens-SRF 8

ADC :

Arginine decarboxylase

SAMDC :

S-adenosyl methionine decarboxylase

VRN1 :

Vernalization 1

FLC :

Flowering locus C

C4H :

Cinnamate 4-hydroxylase

COMT :

Caffeic acid O-methyltransferase

CCoAOMT:

Caffeoyl-CoA O-methyltransferase

MYB:

MYeloblastosis

bHLH:

Basic helix-loop-helix

TPSs:

Terpenoid synthases

ACCs:

Acyl-CoA carboxylases

PKSs:

Polyketide synthases

PTs:

Prenyltransferases

UP2K:

Upstream 2-kb region

ATR2 :

Arabidopsis thaliana cytochrome P450 reductase 2

BY4741:

Baker’s yeast strain BY4741

SD-URA:

Synthetic dropout medium without uracil

LC-MS/MS:

Liquid chromatography-mass spectrometry/mass spectrometry

ESI:

Electrospray ionization

EVO C18:

Enhanced vortex organic C18

CDS:

Coding sequence

BD:

Binding domain

Y1H:

Yeast one-hybrid

SD-Leu:

Synthetic dropout medium without leucine

AbA:

Aureobasidin A

PCR:

Polymerase chain reaction

LUC:

Luciferase reporter gene

TF:

Transcription factor

LB:

Luria-bertani medium

MES:

2-(N-Morpholino)ethanesulfonic acid

EP tube:

Eppendorf tube

CCD:

Charge-coupled device

REN:

Renilla luciferase (Internal Control)

C4H :

Cinnamate 4-hydroxylase

C3H :

p-Coumarate 3-hydroxylase

HCT :

Hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase

CCoAOMT :

Caffeoyl-CoA 3-O-methyltransferase

CCR :

Cinnamoyl-CoA reductase

CAD :

Cinnamyl alcohol dehydrogenase

EF:

Early flowering stage

NG:

Normal growth stage

CYP84:

Cytochrome P450 family 84

DREB:

Dehydration-responsive element binding protein

ERF:

Ethylene-responsive factor

RAV:

Related to ABI3/VP1

ERE:

Ethylene-responsive element

ABRE:

Abscisic acid responsive element

DRE/CRT:

Dehydration-responsive element/CRepeat element

References

  1. Zhang, H. Y., Bi, W. G., Yu, Y. & Liao, W. B. Angelica sinensis (Oliv.) Diels in China: Distribution, cultivation, utilization and variation. Genetic Res. Crop Evol. 59(4), 607–613. https://doi.org/10.1007/s10722-012-9795-9 (2012).

    Google Scholar 

  2. Zhao, K. J. et al. Molecular genetic and chemical assessment of radix Angelica (Danggui) in China. J. Agric. Food Chem. 51(9), 2576–2583. https://doi.org/10.1021/jf026178h (2003).

    Google Scholar 

  3. Li, D., Rui, Y. xin, Guo, S. duo, Luan, F., Liu, R., & Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. In Life Sciences Elsevier Inc. 284 https://doi.org/10.1016/j.lfs.2021.119921 (2021)

  4. Li, J. et al. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. Plant Biol. 23(4), 574–582. https://doi.org/10.1111/plb.13249 (2021).

    Google Scholar 

  5. Li, M., Li, J., Wei, J. & Paré, P. W. Transcriptional controls for early bolting and flowering in angelica sinensis. Plants https://doi.org/10.3390/plants10091931 (2021).

    Google Scholar 

  6. Yang, C., Yang, W., Chen, Y., Cheng, Q., & Chen, W. Improving renoprotective effects by adding piperazine ferulate and angiotensin receptor blocker in diabetic nephropathy: a meta-analysis of randomized controlled trials. In International Urology and Nephrology Springer Science and Business Media B.V. 54(2):299-307 https://doi.org/10.1007/s11255-021-02927-2 (2022)

  7. Han, X. et al. The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis. Plant J. 112(5), 1224–1237. https://doi.org/10.1111/tpj.16007 (2022).

    Google Scholar 

  8. Li, M., Cui, X., Jin, L., Li, M. & Wei, J. Bolting reduces ferulic acid and flavonoid biosynthesis and induces root lignification in Angelica sinensis. Plant Physiol. Biochem. 170, 171–179. https://doi.org/10.1016/j.plaphy.2021.12.005 (2022).

    Google Scholar 

  9. Li, S. et al. Integrating genomic and multiomic data for Angelica sinensis provides insights into the evolution and biosynthesis of pharmaceutically bioactive compounds. Commun. Biol. https://doi.org/10.1038/s42003-023-05569-5 (2023).

    Google Scholar 

  10. Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience https://doi.org/10.1093/gigascience/gix120 (2018).

    Google Scholar 

  11. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 (2012).

    Google Scholar 

  12. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12(1), 323. https://doi.org/10.1186/1471-2105-12-323 (2011).

    Google Scholar 

  13. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    Google Scholar 

  14. Bailey, T. L. et al. MEME suite: tools for motif discovery and searching. Nucleic Acids Res. https://doi.org/10.1093/nar/gkp335 (2009).

    Google Scholar 

  15. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).

    Google Scholar 

  16. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348 (2009).

    Google Scholar 

  17. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015 (2020).

    Google Scholar 

  18. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8(1), 28–36. https://doi.org/10.1111/2041-210X.12628 (2017).

    Google Scholar 

  19. Wickham, H. ggplot2 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.

    Google Scholar 

  20. Guo, Y. et al. YeastFab: The design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Res. 43(13), e88. https://doi.org/10.1093/nar/gkv464 (2015).

    Google Scholar 

  21. Hellens, R. P. et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods https://doi.org/10.1186/1746-4811-1-13 (2005).

    Google Scholar 

  22. Sakuma, Y. et al. DNA-binding specificity of the ERF/AP2 domain of arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290(3), 998–1009. https://doi.org/10.1006/bbrc.2001.6299 (2002).

    Google Scholar 

  23. Guo, H. & Ecker, J. R. The ethylene signaling pathway: new insights. Curr. Opinion Plant Biol. 7(1), 40–49. https://doi.org/10.1016/j.pbi.2003.11.011 (2004).

    Google Scholar 

  24. Shinozaki, K. & Yamaguchi-Shinozaki, K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opinion Plant Biol. 3(3), 217–223. https://doi.org/10.1016/S1369-5266(00)80068-0 (2000).

    Google Scholar 

  25. Yu, G. et al. Transcriptome and digital gene expression analysis unravels the novel mechanism of early flowering in Angelica sinensis. Sci. Rep. https://doi.org/10.1038/s41598-019-46414-2 (2019).

    Google Scholar 

  26. De Boer, K. et al. Apetala2/Ethylene response factor and basic helix–loop–helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J. 66(6), 1053–1065. https://doi.org/10.1111/j.1365-313X.2011.04566.x (2011).

    Google Scholar 

  27. Shoji, T., Kajikawa, M. & Hashimoto, T. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22(10), 3390–3409. https://doi.org/10.1105/tpc.110.078543 (2010).

    Google Scholar 

  28. Paul, P. et al. A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol. 213(3), 1107–1123. https://doi.org/10.1111/nph.14252 (2017).

    Google Scholar 

  29. Udomsom, N. et al. Function of AP2/ERF Transcription Factors Involved in the Regulation of Specialized Metabolism in Ophiorrhiza pumila Revealed by Transcriptomics and Metabolomics. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01861 (2016).

    Google Scholar 

  30. Van Der Fits, L., & Memelink, J. (n.d.). ORCA3, a Jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. www.sciencemag.org

  31. van der Fits, L. & Memelink, J. ORCA3, a Jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289(5477), 295–297. https://doi.org/10.1126/science.289.5477.295 (2000).

    Google Scholar 

  32. Lu, X. et al. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol. 198(4), 1191–1202. https://doi.org/10.1111/nph.12207 (2013).

    Google Scholar 

  33. Yu, Z.-X. et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in artemisia annua L. Mol. Plant 5(2), 353–365. https://doi.org/10.1093/mp/ssr087 (2012).

    Google Scholar 

  34. Cárdenas, P. D. et al. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 7(1), 10654. https://doi.org/10.1038/ncomms10654 (2016).

    Google Scholar 

  35. Nakayasu, M. et al. JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. Plant J. 94(6), 975–990. https://doi.org/10.1111/tpj.13911 (2018).

    Google Scholar 

  36. Thagun, C. et al. Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant Cell Physiol. 57(5), 961–975. https://doi.org/10.1093/pcp/pcw067 (2016).

    Google Scholar 

  37. Springer, N., de León, N., & Grotewold, E. (2019). Challenges of Translating Gene Regulatory Information into Agronomic Improvements. In Trends in Plant Science (Vol. 24, Issue 12, pp. 1075–1082). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2019.07.004

Download references

Acknowledgements

Supported by the National Key Research and Development Program of China (Grant No.2022YFD1201600). We acknowledge Qi Zhou did the Yeast-1-hybrid, Shujie Wang and Feng Zhang did the F5H enzymatic analysis. Xin Jin, Meng Xu., Shiming Li and Kang Yu performed the transcriptome and phylogenetic analysis.

Funding

This study was financially supported by HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China. The funder did not participate in the designing, performing, or reporting of the current study.

Author information

Author notes

  1. Zhuojia Wu, Jintao Fang are co-first authors.

Authors and Affiliations

  1. College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China

    Zhuojia Wu & Ping Wang

  2. HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China

    Zhuojia Wu & Tsan-Yu Chiu

  3. BGI-Shenzhen, Shenzhen, 518083, Guangdong, China

    Jintao Fang & Tsan-Yu Chiu

  4. Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China

    Zhongxu Zhu

  5. Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan, China

    Qun Liu

Authors

  1. Zhuojia Wu
  2. Jintao Fang
  3. Qun Liu
  4. Ping Wang
  5. Zhongxu Zhu
  6. Tsan-Yu Chiu

Contributions

Z.W. and T.-Y.C. designed and performed the experiments and analyzed the data. J.F. conducted the motif and protein structure analysis. Z.Z. performed the correlation analysis. Q.L. assisted with transcriptome data retrieval. Z.W., J.F., and T.-Y.C. wrote the manuscript. P.W. and T.-Y.C. revised the manuscript. All authors read and approved the final version.

Corresponding authors

Correspondence to Ping Wang, Zhongxu Zhu or Tsan-Yu Chiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All data analyzed in this study were derived from publicly available datasets, with corresponding SRA accession numbers detailed in Supplementary Table 1.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Fang, J., Liu, Q. et al. AsAP2 transcriptionally activates ferulate 5-hydroxylase, diverting ferulic acid metabolism toward lignin biosynthesis in Angelica sinensis.. Sci Rep (2025). https://doi.org/10.1038/s41598-025-33378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33378-9

Keywords