Autonomous biogenesis of all thirty proteins of the Escherichia coli translation machinery

autonomous-biogenesis-of-all-thirty-proteins-of-the-escherichia-coli-translation-machinery
Autonomous biogenesis of all thirty proteins of the Escherichia coli translation machinery

References

  1. Noireaux, V., Maeda, Y. T. & Libchaber, A. Development of an artificial cell, from self-organization to computation and self-reproduction. Proc. Natl. Acad. Sci. USA 108, 3473–3480 (2011).

    Google Scholar 

  2. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Google Scholar 

  3. Niwa, T. et al. Large-scale analysis of macromolecular crowding effects on protein aggregation using a reconstituted cell-free translation system. Front. Microbiol. 6, 1113 (2015).

  4. Awai, T., Ichihashi, N. & Yomo, T. Activities of 20 aminoacyl-tRNA synthetases expressed in a reconstituted translation system in Escherichia coli. Biochem. Biophys. Rep. 3, 140–143 (2015).

    Google Scholar 

  5. Berhanu, S., Ueda, T. & Kuruma, Y. Artificial photosynthetic cell producing energy for protein synthesis. Nat. Commun. 10, 1325 (2019).

    Google Scholar 

  6. Giaveri, S. et al. Integrated translation and metabolism in a partially self-synthesizing biochemical network. Science 385, 174–178 (2024).

    Google Scholar 

  7. Wei, E. & Endy, D. Experimental tests of functional molecular regeneration via a standard framework for coordinating synthetic cell building. Preprint at https://doi.org/10.1101/2021.03.03.433818 (2021).

  8. Kohyama, S., Merino-Salomón, A. & Schwille, P. In vitro assembly, positioning and contraction of a division ring in minimal cells. Nat. Commun. 13, 6098 (2022).

    Google Scholar 

  9. Luisi, P. L., Ferri, F. & Stano, P. Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006).

    Google Scholar 

  10. Forster, A. C. & Church, G. M. Towards synthesis of a minimal cell. Mol. Syst. Biol. 2, 45 (2006).

    Google Scholar 

  11. Kazuta, Y., Matsuura, T., Ichihashi, N. & Yomo, T. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system. J. Biosci. Bioeng. 118, 554–557 (2014).

    Google Scholar 

  12. Li, J. et al. Dissecting limiting factors of the protein synthesis using recombinant elements (PURE) system. Translation 5, e1327006 (2017).

    Google Scholar 

  13. Ganesh, R. B. & Maerkl, S. J. Towards self-regeneration: exploring the limits of protein synthesis in the protein synthesis using recombinant elements (PURE) cell-free transcription–translation system. ACS Synth. Biol. 13, 2555–2566 (2024).

    Google Scholar 

  14. Libicher, K. & Mutschler, H. Probing self-regeneration of essential protein factors required for in vitro translation activity by serial transfer. Chem. Commun. 56, 15426–15429 (2020).

    Google Scholar 

  15. Hagino, K., Masuda, K., Shimizu, Y. & Ichihashi, N. Sustainable regeneration of 20 aminoacyl-tRNA synthetases in a reconstituted system toward self-synthesizing artificial systems. Sci. Adv. 11, eadt6269 (2025).

    Google Scholar 

  16. Lavickova, B., Laohakunakorn, N. & Maerkl, S. J. A partially self-regenerating synthetic cell. Nat. Commun. 11, 6340 (2020).

    Google Scholar 

  17. Daube, S. S., Bracha, D., Buxboim, A. & Bar-Ziv, R. H. Compartmentalization by directional gene expression. Proc. Natl. Acad. Sci. USA 107, 2836–2841 (2010).

    Google Scholar 

  18. Levy, M. et al. Boundary-free ribosome compartmentalization by gene expression on a surface. ACS Synth. Biol. 10, 609–619 (2021).

    Google Scholar 

  19. Vonshak, O. et al. Programming multi-protein assembly by gene-brush patterns and two-dimensional compartment geometry. Nat. Nanotechnol. 15, 783–791 (2020).

    Google Scholar 

  20. Levy, M., Falkovich, R., Daube, S. S. & Bar-Ziv, R. H. Autonomous synthesis and assembly of a ribosomal subunit on a chip. Sci. Adv. 6, eaaz6020 (2020).

    Google Scholar 

  21. Libicher, K., Hornberger, R., Heymann, M. & Mutschler, H. In vitro self-replication and multicistronic expression of large synthetic genomes. Nat. Commun. 11, 904 (2020).

    Google Scholar 

  22. Doerr, A., Foschepoth, D., Forster, A. C. & Danelon, C. In vitro synthesis of 32 translation-factor proteins from a single template reveals impaired ribosomal processivity. Sci. Rep. 11, 1898 (2021).

    Google Scholar 

  23. Dora Tang, T. Y., van Swaay, D., deMello, A., Ross Anderson, J. L. & Mann, S. In vitro gene expression within membrane-free coacervate protocells. Chem. Commun. 51, 11429–11432 (2015).

    Google Scholar 

  24. Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl. Acad. Sci. USA 110, 11692–11697 (2013).

    Google Scholar 

  25. Shimizu, Y., Tanimura, N. & Matsuura, T. ePURE_JSBML: a tool for constructing a deterministic model of a reconstituted Escherichia coli protein translation system with a user-specified nucleic acid sequence. Adv. Biol. 7, 2200177 (2023).

    Google Scholar 

  26. Borkowski, O. et al. Cell-free prediction of protein expression costs for growing cells. Nat. Commun. 9, 1457 (2018).

    Google Scholar 

  27. Ganesh, R. B. & Maerkl, S. J. Biochemistry of aminoacyl tRNA synthetase and tRNAs and their engineering for cell-free and synthetic cell applications. Front. Bioeng. Biotechnol. 10, 918659 (2022).

    Google Scholar 

  28. Diago-Navarro, E., Mora, L., Buckingham, R. H., Díaz-Orejas, R. & Lemonnier, M. Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE. Mol. Microbiol. 71, 66–78 (2009).

    Google Scholar 

  29. Croitoru, V. et al. RNA chaperone activity of translation initiation factor IF1. Biochimie 88, 1875–1882 (2006).

    Google Scholar 

  30. Shepherd, T. R. et al. De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res. 45, 10895–10905 (2017).

    Google Scholar 

  31. Nikolov, V., Lipowsky, R. & Dimova, R. Behavior of giant vesicles with anchored DNA molecules. Biophys. J. 92, 4356–4368 (2007).

    Google Scholar 

  32. Bakshi, S., Choi, H. & Weisshaar, J. C. The spatial biology of transcription and translation in rapidly growing Escherichia coli. Front. Microbiol. 6, 636 (2015).

  33. Tian, T. & Salis, H. M. A predictive biophysical model of translational coupling to coordinate and control protein expression in bacterial operons. Nucleic Acids Res. 43, 7137–7151 (2015).

    Google Scholar 

  34. Buxboim, A. et al. A single-step photolithographic interface for cell-free gene expression and active biochips. Small 3, 500–510 (2007).

    Google Scholar 

  35. Buxboim, A., Daube, S. S. & Bar-Ziv, R. Ultradense synthetic gene brushes on a chip. Nano Lett. 9, 909–913 (2009).

    Google Scholar 

  36. Bracha, D., Karzbrun, E., Daube, S. S. & Bar-Ziv, R. H. Emergent properties of dense DNA phases toward artificial biosystems on a surface. Acc. Chem. Res. 47, 1912–1921 (2014).

    Google Scholar 

  37. Kempf, N. et al. A novel method to evaluate ribosomal performance in cell-free protein synthesis systems. Sci. Rep. 7, 46753 (2017).

    Google Scholar 

  38. Niwa, T., Kanamori, T., Ueda, T. & Taguchi, H. Global analysis of chaperone effects using a reconstituted cell-free translation system. Proc. Natl. Acad. Sci. USA 109, 8937–8942 (2012).

    Google Scholar 

  39. Heurgué-Hamard, V., Champ, S., Engström, A., Ehrenberg, M. & Buckingham, R. H. The hemK gene in Escherichia coli encodes the N(5)-glutamine methyltransferase that modifies peptide release factors. EMBO J. 21, 769–778 (2002).

    Google Scholar 

  40. Pierson, W. E. et al. Uniformity of peptide release is maintained by methylation of release factors. Cell Rep. 17, 11–18 (2016).

    Google Scholar 

  41. Ude, S. et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85 (2013).

    Google Scholar 

  42. Li, J., Gu, L., Aach, J. & Church, G. M. Improved cell-free RNA and protein synthesis system. PLoS ONE 9, e106232 (2014).

    Google Scholar 

  43. Doi, Y., Ohtsuki, T., Shimizu, Y., Ueda, T. & Sisido, M. Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system. J. Am. Chem. Soc. 129, 14458–14462 (2007).

    Google Scholar 

  44. Li, J. et al. Cogenerating synthetic parts toward a self-replicating system. ACS Synth. Biol. 6, 1327–1336 (2017).

    Google Scholar 

  45. Lavickova, B., Grasemann, L. & Maerkl, S. J. Improved cell-free transcription–translation reactions in microfluidic chemostats augmented with hydrogel membranes for continuous small molecule dialysis. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.2c00453 (2022).

  46. Karzbrun, E., Tayar, A. M., Noireaux, V. & Bar-Ziv, R. H. Programmable on-chip DNA compartments as artificial cells. Science 345, 829–832 (2014).

    Google Scholar 

  47. Furano, A. V. Content of elongation factor Tu in Escherichia coli. Proc. Natl. Acad. Sci. USA. 72, 4780–4784 (1975).

    Google Scholar 

  48. Aoyama, R. et al. In vitro reconstitution of the Escherichia coli 70S ribosome with a full set of recombinant ribosomal proteins. J. Biochem. 171, 227–237 (2021).

    Google Scholar 

  49. Hibi, K. et al. Reconstituted cell-free protein synthesis using in vitro transcribed tRNAs. Commun. Biol. 3, 350 (2020).

    Google Scholar 

  50. Miyachi, R., Shimizu, Y. & Ichihashi, N. Transfer RNA synthesis-coupled translation and DNA replication in a reconstituted transcription/translation system. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.2c00163 (2022).

  51. Sakatani, Y., Yomo, T. & Ichihashi, N. Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination. Sci. Rep. 8, 13089 (2018).

    Google Scholar 

  52. van Nies, P. et al. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat. Commun. 9, 1583 (2018).

    Google Scholar 

  53. Abil, Z. et al. Darwinian evolution of self-replicating DNA in a synthetic protocell. Nat. Commun. 15, 9091 (2024).

    Google Scholar 

  54. Nishizawa, C., Aburaya, S., Kosaka, Y., Sugase, K. & Aoki, W. Optimizing in vitro expression balance of central dogma-related genes using parallel reaction monitoring. J. Biosci. Bioeng. 138, 97–104 (2024).

    Google Scholar 

  55. Shimizu, Y., Kanamori, T. & Ueda, T. Protein synthesis by pure translation systems. Methods 36, 299–304 (2005).

    Google Scholar 

  56. Trauner, A., Bennett, M. H. & Williams, H. D. Isolation of bacterial ribosomes with monolith chromatography. PLoS ONE 6, e16273 (2011).

    Google Scholar 

  57. Halfon, Y. et al. Exit tunnel modulation as resistance mechanism of S. aureus erythromycin resistant mutant. Sci. Rep. 9, 11460 (2019).

    Google Scholar 

  58. Perez-Riverol, Y. et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 53, D543–D553 (2024).

    Google Scholar 

  59. Grasemann, L., Lavickova, B., Elizondo-Cantú, M. C. & Maerkl, S. J. OnePot PURE cell-free system. JoVE, 62625. https://doi.org/10.3791/62625 (2021).

  60. Schwarz-Schilling, M. Autonomous biogenesis of all thirty proteins of the Escherichia coli translation machinery, [Data set]. Zenodo, https://doi.org/10.5281/zenodo.17546983 (2025).

Download references