References
-
Vašková, J., Kováčová, G., Pudelský, J., Palenčár, D. & Mičková, H. Methylglyoxal formation: Metabolic routes and consequences. Antioxidants 14(2), 212 (2025).
-
Bellier, J. et al. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer Diabetes Res. Clin. Pract. 148(200), 211 (2019).
-
Schalkwijk, C. G. & Stehouwer, C. D. A. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol. Rev. 100, 407–461 (2019).
-
Zhang, W. et al. Methylglyoxal accumulation contributes to accelerated brain aging in spontaneously hypertensive rats. Free Radic. Biol. Med. 210, 108–119 (2024).
-
Vangrieken, P. et al. Modelling the effects of elevated methylglyoxal levels on vascular and metabolic complications. Sci. Rep. 15, 6025 (2025).
-
Lai, S. W., Lopez Gonzalez, E. D., Zoukari, T., Ki, P. & Shuck, S. C. Methylglyoxal and its adducts: Induction, repair, and association with disease. Chem. Res. Toxicol. 35, 1720–1746 (2022).
-
Aschner, M. et al. Role of gut microbiota in the modulation of the health effects of advanced glycation end-products (Review). Int. J. Mol. Med. 51, 44 (2023).
-
Lee, C. & Park, C. Bacterial responses to glyoxal and methylglyoxal: Reactive electrophilic species. Int. J. Mol. Sci. 18(1), 169 (2017).
-
Rabbani, N. & Thornalley, P. J. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem. Biophys. Res. Commun. 458, 221–226 (2015).
-
Huang, K. X., Rudolph, F. B. & Bennett, G. N. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2-propanediol. Appl. Environ. Microbiol. 65, 7 (1999).
-
Ferguson, G. P., Tötemeyer, S., MacLean, M. J. & Booth, I. R. Methylglyoxal production in bacteria: Suicide or survival?. Arch. Microbiol. 170, 209–218 (1998).
-
Booth, I. R. et al. Bacterial production of methylglyoxal: a survival strategy or death by misadventure?. Biochem. Soc. Trans. 31, 1406–1408 (2003).
-
Tirelli, E. et al. Effects of methylglyoxal on intestine and microbiome composition in aged mice. Food Chem. Toxicol. 197, 115276 (2025).
-
Akinrimisi, O. I. et al. Does gut microbial methylglyoxal metabolism impact human physiology?. Antioxidants 14(7), 763 (2025).
-
Herraiz, T. β-Carboline alkaloids. In Bioactive compounds in foods (eds. Gilbert, J. & Senyuva, H. Z.) 199–223 (Blackwell publishing, 2008).
-
Herraiz, T. & Galisteo, J. Tetrahydro-β-carboline alkaloids that occur in foods and biological systems act as radical scavengers and antioxidants in the ABTS assay. Free Radic. Res. 36, 923–928 (2002).
-
Jarhad, D. B., Mashelkar, K. K., Kim, H.-R., Noh, M. & Jeong, L. S. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors as potential therapeutics. J. Med. Chem. 61, 9791–9810 (2018).
-
Herraiz, T., González, D., Ancín-Azpilicueta, C., Arán, V. J. & Guillén, H. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol. 48, 839–845 (2010).
-
Aaghaz, S., Sharma, K., Jain, R. & Kamal, A. β-Carbolines as potential anticancer agents. Eur. J. Med. Chem. 216, 113321 (2021).
-
Herraiz, T. N-methyltetrahydropyridines and pyridinium cations as toxins and comparison with naturally-occurring alkaloids. Food Chem. Toxicol. 97, 23–39 (2016).
-
Herraiz, T., Sánchez-Arroyo, A., de Las, R. B. & Muñoz, R. Lactobacillus species do not produce 1-acetyl-β-carboline. Nat. Commun. 15, 6442 (2024).
-
Herraiz, T., Salgado, A. & Peña, A. Identification, occurrence, and mechanism of formation of 1-acetyl-β-carbolines derived from L-Tryptophan and methylglyoxal. J. Agric. Food Chem. 73, 3044–3055 (2025).
-
MacAlpine, J. et al. A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat. Commun. 12, 6151 (2021).
-
Glick, V. J. et al. Vaginal lactobacilli produce anti-inflammatory β-carboline compounds. Cell Host Microbe 32, 1897-1909.e7 (2024).
-
Landete, J. M. et al. Anaerobic green fluorescent protein as a marker of Bifidobacterium strains. Int. J. Food Microbiol. 175, 6–13 (2014).
-
Landete, J. M., Arqués, J. L., Peirotén, Á., Langa, S. & Medina, M. An improved method for the electrotransformation of lactic acid bacteria: A comparative survey. J. Microbiol. Methods 105, 130–133 (2014).
-
Hopper, D. J. & Cooper, R. A. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis?. FEBS Lett. 13, 213–216 (1971).
-
Saadat, D. & Harrison, D. H. T. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: Cloning, expression, and functional characterization of conserved aspartic acid residues. Biochemistry 37, 10074–10086 (1998).
-
Guillén, H., Curiel, J. A., Landete, J. M., Munoz, R. & Herraiz, T. Characterization of a nitroreductase with selective nitroreduction properties in the food and intestinal lactic acid bacterium Lactobacillus plantarum WCFS1. J. Agric. Food Chem. 57, 10457–10465 (2009).
-
Muñoz, R. et al. Food phenolics and Lactiplantibacillus plantarum. Int. J. Food Microbiol. 412, 110555 (2024).
-
Tötemeyer, S., Booth, N. A., Nichols, W. W., Dunbar, B. & Booth, I. R. From famine to feast: The role of methylglyoxal production in Escherichia coli. Mol. Microbiol. 27, 553–562 (1998).
-
Gandhi, N. N., Barrett-Wilt, G., Steele, J. L. & Rankin, S. A. Lactobacillus casei expressing methylglyoxal synthase causes browning and heterocyclic amine formation in Parmesan cheese extract. J. Dairy Sci. 102, 100–112 (2019).
-
Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).
-
Schütze, A., Benndorf, D., Püttker, S., Kohrs, F. & Bettenbrock, K. The impact of ackA, pta, and ackA-pta mutations on growth, gene expression and protein acetylation in Escherichia coli K-12. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00233 (2020).
-
Kukurugya, M. A., Rosset, S. & Titov, D. V. The Warburg Effect is the result of faster ATP production by glycolysis than respiration. Proc. Natl. Acad. Sci. 121, e2409509121 (2024).
-
Iskandar, C. F., Cailliez-Grimal, C., Borges, F. & Revol-Junelles, A.-M. Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends Food Sci. Technol. 88, 121–132 (2019).
-
Rhimi, M. et al. The acid tolerant l-arabinose isomerase from the food grade Lactobacillus sakei 23K is an attractive d-tagatose producer. Bioresour. Technol. 101, 9171–9177 (2010).
-
McLeod, A., Snipen, L., Naterstad, K. & Axelsson, L. Global transcriptome response in Lactobacillus sakei during growth on ribose. BMC Microbiol. 11, 145 (2011).
-
Chaillou, S. et al. The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat. Biotechnol. 23, 1527–1533 (2005).
-
Insook, K. et al. Ribose utilization with an excess of mutarotase causes cell death due to accumulation of methylglyoxal. J. Bacteriol. 186, 7229–7235 (2004).
-
Kayser, A., Weber, J., Hecht, V. & Rinas, U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151, 693–706 (2005).
-
Kadner, R. J., Murphy, G. P. & Stephens, C. M. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J. Gen. Microbiol. 138, 2007–2014 (1992).
-
Gregory, R. R., Maulik, P. V., Chelsea, L. R. & Carin, V. K. Depletion of glycolytic intermediates plays a key role in glucose-phosphate stress in Escherichia coli. J. Bacteriol. 195, 4816–4825 (2013).
-
Chakraborty, S., Karmakar, K. & Chakravortty, D. Cells producing their own nemesis: Understanding methylglyoxal metabolism. IUBMB Life 66, 667–678 (2014).
-
Kalapos, M. P. The tandem of free radicals and methylglyoxal. Chem. Biol. Interact. 171, 251–271 (2008).
-
Atrott, J., Haberlau, S. & Henle, T. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey. Carbohydr. Res. 361, 7–11 (2012).
-
He, Y. et al. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed. Pharmacother. 131, 110663 (2020).
-
Zheng, J. et al. Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends Food Sci. Technol. 107, 201–212 (2021).
-
Arribas-Lorenzo, G. & Morales, F. J. Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-induced contaminants. J. Agric. Food Chem. 58, 2966–2972 (2010).
-
Brighina, S. et al. Detrimental effect on the gut microbiota of 1,2-dicarbonyl compounds after in vitro gastro-intestinal and fermentative digestion. Food Chem. 341, 128237 (2021).
-
Nyquist, O. L. et al. Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Mol. Genet. Genomics 285, 297–311 (2011).
-
Kingsley, S. F. et al. Bacterial processing of glucose modulates C. elegans lifespan and healthspan. Sci. Rep. 11, 5931 (2021).
-
Lee, M. et al. Pharmacological evaluation of 1-acetyl-β-carboline, a naturally occurring compound with anti-skin cancer potential. Mol. Ther. Oncol. 33, 201093 (2025).
-
Herraiz, T. Analysis of tetrahydro-β-carboline-3-carboxylic acids in foods by solid-phase extraction and reversed-phase high-performance liquid chromatography combined with fluorescence detection. J. Chromatogr. A 871, 23–30 (2000).
-
Herraiz, T., Guillén, H. & Galisteo, J. N-Methyltetrahydro-β-carboline analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin are oxidized to neurotoxic β-carbolinium cations by heme peroxidases. Biochem. Biophys. Res. Commun. 356, 118–123 (2007).
-
Herraiz, T. Identification and occurrence of β-carboline alkaloids in raisins and inhibition of monoamine oxidase (MAO). J. Agric. Food Chem. 55, 8534–8540 (2007).
-
Herraiz, T. & Vera, F. Occurrence, formation from D-fructose and 3-deoxyglucosone, and activity of the carbohydrate-derived β-carbolines in foods. J. Agric. Food Chem. 69, 6650–6664 (2021).
-
Herraiz, T. & Salgado, A. Formation, identification, and occurrence of the furan-containing β-Carboline flazin derived from L-tryptophan and carbohydrates. J. Agric. Food Chem. 72, 6575–6584 (2024).
-
Herraiz, T., Peña, A., Mateo, H., Herraiz, M. & Salgado, A. Formation, characterization, and occurrence of β-carboline alkaloids derived from α-dicarbonyl compounds and L-tryptophan. J. Agric. Food Chem. 70, 9143–9153 (2022).
-
Herraiz, T., Peña, A. & Salgado, A. Identification, formation, and occurrence of perlolyrine: A β-carboline alkaloid with a furan moiety in foods. J. Agric. Food Chem. 71, 13451–13461 (2023).
-
Byun, W. S. et al. Design, synthesis, and biological activity of marinacarboline analogues as STAT3 pathway inhibitors for docetaxel-resistant triple-negative breast cancer. J. Med. Chem. 66, 3106–3133 (2023).
-
Qin, L., Yi, W., Lian, X.-Y. & Zhang, Z. Bioactive alkaloids from the Actinomycete Actinoalloteichus sp. ZZ1866. J. Nat. Prod. 83, 2686–2695 (2020).
-
Kong, D., Cui, L., Wang, X., Wo, J. & Xiong, F. Fungus-derived opine enhances plant photosynthesis. J. Adv. Res. 75, 65–67 (2025).
-
Samsuzzaman, M. et al. Depression like-behavior and memory loss induced by methylglyoxal is associated with tryptophan depletion and oxidative stress: A new in vivo model of neurodegeneration. Biol. Res. 57, 87 (2024).
