References
-
Anand, U. et al. Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 10 (4), 1367–1401 (2023).
-
Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 74 (3), 229–263 (2024).
-
Macharia, J. M., Kaposztas, Z. & Bence, R. L. Medicinal characteristics of Withania somnifera L. In colorectal cancer management. Pharmaceuticals 16 (7), 915 (2023).
-
Ferro, Y. et al. Therapeutic fasting in reducing chemotherapy side effects in cancer patients: a systematic review and meta-analysis. Nutrients 15 (12), 2666 (2023).
-
Macharia, J. M. et al. (eds) The Impact of Palliative Care on Mitigating Pain and its Associated Effects in Determining Quality of Life among Colon Cancer Outpatients (MDPI, 2023).
-
Khan, S. U., Fatima, K., Aisha, S. & Malik, F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell. Communication Signal. 22 (1), 109 (2024).
-
Gaikwad, S. S. et al. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook. Heliyon ;9(6). (2023).
-
Macharia, J. M. et al. Antitumor activity of Warbugia ugandensis: methanolic extracts and gene regulation in colorectal cancer. Nutrients 17 (3), 471 (2025).
-
Rudzińska, A. et al. Phytochemicals in cancer treatment and cancer prevention—review on epidemiological data and clinical trials. Nutrients 15 (8), 1896 (2023).
-
Al Junaidi Hs, Ahmad, S. A., Law, D., Alshaeri, H. K. & Talib, W. H. Evaluation of anti-cancer and Immunomodulatory effects of Globe Thistle (Echinops Shakrokii SA Ahmad) extracts: an in vitro and in vivo study. Sci. Rep. 15 (1), 20767 (2025).
-
Macharia, J. M. et al. In vitro Inhibition of colorectal cancer gene targets by Withania somnifera L. Methanolic extracts: A focus on specific genome regulation. Nutrients 16 (8), 1140 (2024).
-
Cai, J., Qiao, Y., Chen, L., Lu, Y. & Zheng, D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J. Nutr. Biochem. 123, 109483 (2024).
-
Tiwari, G., Gupta, M., Devhare, L. D. & Tiwari, R. Therapeutic and phytochemical properties of thymoquinone derived from Nigella sativa. Curr. Drug Res. Reviews Formerly: Curr. Drug Abuse Reviews. 16 (2), 145–156 (2024).
-
Aslani, M. R., Saadat, S. & Boskabady, M. H. Comprehensive and updated review on anti-oxidant effects of Nigella sativa and its constituent, thymoquinone, in various disorders. Iran. J. Basic. Med. Sci. 27 (8), 923 (2024).
-
Shabani, H. et al. Anticancer activity of thymoquinone against breast cancer cells: mechanisms of action and delivery approaches. Biomed. Pharmacother. 165, 114972 (2023).
-
Kurowska, N., Madej, M. & Strzalka-Mrozik, B. Thymoquinone: a promising therapeutic agent for the treatment of colorectal cancer. Curr. Issues. Mol. Biol. 46 (1), 121–139 (2023).
-
Almatroodi, S. A., Almatroudi, A., Alsahli, M. A., Khan, A. A. & Rahmani, A. H. Thymoquinone, an active compound of Nigella sativa: role in prevention and treatment of cancer. Curr. Pharm. Biotechnol. 21 (11), 1028–1041 (2020).
-
Shi, P. et al. Pharmacological effects and mechanisms of bee venom and its main components: recent progress and perspective. Front. Pharmacol. 13, 1001553 (2022).
-
Şengül, F. & Vatansev, H. Overview of apitherapy products: anti-cancer effects of bee venom used in apitherapy. Int. J. Traditional Complement. Med. Res. 2 (1), 36–48 (2021).
-
Gajski, G., Leonova, E. & Sjakste, N. Bee venom: composition and anticancer properties. Toxins 16 (3), 117 (2024).
-
Talib, W. H. et al. Immunomodulatory and anticancer effects of Moringa polyherbal infusions: potentials for preventive and therapeutic use. Front. Immunol. 16, 1597602 (2025).
-
Hamed, R. A. & Talib, W. H. Targeting cisplatin resistance in breast cancer using a combination of thymoquinone and silymarin: an in vitro and in vivo study. Pharmacia (0428 – 0296). 71(1), 1–19 (2024).
-
Lakshmanan, I. & Batra, S. K. Protocol for apoptosis assay by flow cytometry using Annexin V staining method. Bio-protocol 3 (6), e374–e (2013).
-
Kim, K. H. & Sederstrom, J. M. Assaying cell cycle status using flow cytometry. Curr. Protoc. Mol. Biol. 111 (1), 28 (2015). 1-.6. 11.
-
Kokot, Z. J. & Matysiak, J. Simultaneous determination of major constituents of honeybee venom by LC-DAD. Chromatographia 69 (11), 1401–1405 (2009).
-
Ghosh, S. et al. The emerging role of natural products in cancer treatment. Arch. Toxicol. 98 (8), 2353–2391 (2024).
-
Duarte, D., Falcão, S. I., El Mehdi, I., Vilas-Boas, M. & Vale, N. Honeybee venom synergistically enhances the cytotoxic effect of CNS drugs in HT-29 colon and MCF-7 breast cancer cell lines. Pharmaceutics 14 (3), 511 (2022).
-
Alhmied, F., Alammar, A., Alsultan, B., Alshehri, M. & Pottoo, F. H. Molecular mechanisms of thymoquinone as anticancer agent. Comb. Chem. High Throughput Screen. 24 (10), 1644–1653 (2021).
-
Zarrinnahad, H. et al. Apoptotic effect of Melittin purified from Iranian honey bee venom on human cervical cancer HeLa cell line. Int. J. Pept. Res. Ther. 24 (4), 563–570 (2018).
-
Rybak-Chmielewska, H. & Szczêsna, T. HPLC study of chemical composition of honeybee (Apis mellifera L.) venom. J. Apic. Sci. 48 (2), 103–109 (2004).
-
Jang, M-H. et al. Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J. Pharmacol. Sci. 91 (2), 95–104 (2003).
-
Lischer, K. et al. Anti-breast cancer activity on MCF-7 cells of Melittin from indonesia’s apis cerana: an in vitro study. Asian Pac. J. Cancer Prevention: APJCP. 22 (12), 3913 (2021).
-
Nikodijević, D. D. et al. Potential of Melittin to induce apoptosis and overcome multidrug resistance in human colon cancer cell line. Toxin Reviews. 43 (2), 224–235 (2024).
-
Xu, D. et al. Thymoquinone induces G2/M arrest, inactivates PI3K/Akt and nuclear factor-κB pathways in human cholangiocarcinomas both in vitro and in vivo. Oncol. Rep. 31 (5), 2063–2070 (2014).
-
Rajput, S. et al. Molecular targeting of Akt by thymoquinone promotes G1 arrest through translation Inhibition of Cyclin D1 and induces apoptosis in breast cancer cells. Life Sci. 93 (21), 783–790 (2013).
-
Lim, H. N., Baek, S. B. & Jung, H. J. Bee venom and its peptide component Melittin suppress growth and migration of melanoma cells via Inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules 24 (5), 929 (2019).
-
Zamani, M., Bozorg-Ghalati, F. & Mokarram, P. Melittin as an activator of the autophagy and unfolded protein response pathways in colorectal HCT116 cell line. Iran. Biomed. J. 28 (1), 46 (2023).
-
El-Najjar, N. et al. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 15 (2), 183–195 (2010).
-
Alshaibi, H. F., Aldarmahi, N. A., Alkhattabi, N. A., Alsufiani, H. M. & Tarbiah, N. I. Studying the anticancer effects of thymoquinone on breast cancer cells through natural killer cell activity. Biomed. Res. Int. 2022 (1), 9218640 (2022).
-
Sheikhnia, F., Rashidi, V., Maghsoudi, H. & Majidinia, M. Potential anticancer properties and mechanisms of thymoquinone in colorectal cancer. Cancer Cell Int. 23 (1), 320 (2023).
-
Sutton, K. M., Greenshields, A. L. & Hoskin, D. W. Thymoquinone, a bioactive component of black Caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53. Nutr. Cancer. 66 (3), 408–418 (2014).
-
Kundu, J., Choi, B. Y., Jeong, C-H., Kundu, J. K. & Chun, K-S. Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2-and Src-mediated phosphorylation of EGF receptor tyrosine kinase. Oncol. Rep. 32 (2), 821–828 (2014).
-
Gali-Muhtasib, H. et al. Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res. 68 (14), 5609–5618 (2008).
-
Pal, R. R., Rajpal, V., Singh, P. & Saraf, S. A. Recent findings on thymoquinone and its applications as a nanocarrier for the treatment of cancer and rheumatoid arthritis. Pharmaceutics 13 (6), 775 (2021).
-
Arafa, E-S-A. et al. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat. Research/Fundamental Mol. Mech. Mutagen. 706 (1–2), 28–35 (2011).
-
Zheng, J. et al. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and Inhibition of nuclear factor kappa B. Oncotarget 6 (42), 44437 (2015).
-
Zhao, J. et al. Bee venom protects against pancreatic cancer via inducing cell cycle arrest and apoptosis with suppression of cell migration. J. Gastrointest. Oncol. 13 (2), 847 (2022).
-
Sengul, F., Vatansev, H. & Ozturk, B. Investigation the effects of bee venom and H-dental-derived mesenchymal stem cells on non-small cell lung cancer cells (A549). Mol. Biol. Rep. 51 (1), 2 (2024).
-
Moon, D-O. et al. Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon 51 (1), 112–120 (2008).
-
Yu, R., Wang, M., Wang, M. & Han, L. Melittin suppresses growth and induces apoptosis of non-small-cell lung cancer cells via down-regulation of TGF-β-mediated ERK signal pathway. Braz. J. Med. Biol. Res. 54 (2), e9017 (2020).
-
Duffy, C. et al. Honeybee venom and Melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precision Oncol. 4 (1), 24 (2020).
-
Pandidan, S. & Mechler, A. Nano-viscosimetry analysis of the membrane disrupting action of the bee venom peptide Melittin. Sci. Rep. 9 (1), 10841 (2019).
-
Tipgomut, C. et al. Melittin induced G1 cell cycle arrest and apoptosis in chago-K1 human bronchogenic carcinoma cells and inhibited the differentiation of THP-1 cells into tumour-associated macrophages. Asian Pac. J. Cancer Prevention: APJCP. 19 (12), 3427 (2018).
-
Jepson, T. A., Hall, S. C. & Chung, J. K. Single-molecule phospholipase A2 becomes processive on melittin-induced membrane deformations. Biophys. J. 121 (8), 1417–1423 (2022).
-
Laurindo, L. F. et al. The therapeutic potential of bee venom-derived Apamin and Melittin conjugates in cancer treatment: A systematic review. Pharmacol. Res. 209, 107430 (2024).
-
Jadhav, V. et al. Bee venom loaded nanomaterials for cancer therapy: a novel approach. Discover Mater. 5 (1), 92 (2025).
-
Saravanan, D., Rafi, S. M. & Mohan, M. Identification of novel bioactivities from bee venom to target TNF-α for cancer therapy. Archives Clin. Toxicol. 5 (1), 22–24 (2023).
-
Vasileva, V. Y., Khairullina, Z. M., Sudarikova, A. V. & Chubinskiy-Nadezhdin, V. I. Role of calcium-activated potassium channels in proliferation, migration and invasion of human chronic myeloid leukemia K562 cells. Membranes 13 (6), 583 (2023).
-
Tanuğur-Samanc, A. E. & Kekeçoğlu, M. An evaluation of the chemical content and Microbiological contamination of Anatolian bee venom. PLoS One. 16 (7), e0255161 (2021).
-
Carpena, M., Nuñez-Estevez, B., Soria-Lopez, A. & Simal-Gandara, J. Bee venom: an updating review of its bioactive molecules and its health applications. Nutrients 12 (11), 3360 (2020).
