Marschall, S., Huffstadt, U., Balling, R. & Hrabě De Angelis, M. Reliable recovery of inbred mouse lines using cryopreserved spermatozoa. Mamm. Genome 10, 773–776 (1999).
Zevnik, B., Jerchow, B. & Buch, T. 3R measures in facilities for the production of genetically modified rodents. Lab Anim. 51, 162–177 (2022).
Sztein, J. M., Takeo, T. & Nakagata, N. History of cryobiology, with special emphasis in evolution of mouse sperm cryopreservation. Cryobiology 82, 57–63 (2018).
Luque, G. M. et al. Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J. Cell. Physiol. 233, 9685–9700 (2018).
Escoffier, J. et al. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol. Reprod. 92, 121 (2015).
Ostermeier, G. C., Wiles, M. V., Farley, J. S. & Taft, R. A. Conserving, distributing and managing genetically modified mouse lines by sperm cryopreservation. PLoS ONE 3, 1–8 (2008).
Tayama, K. et al. Measuring mouse sperm parameters using a particle counter and sperm quality analyzer: a simple and inexpensive method. Reprod. Toxicol. 22, 92–101 (2006).
Tecirlioǧlu, R. T., Hayes, E. S. & Trounson, A. O. Semen collection from mice: electroejaculation. Reprod. Fertil. Dev. 14, 363–371 (2002).
Moreno-Del Val, G., Muñoz-Robledano, P., Caler, A. J. & Morante, J. A method for multiple sampling mouse sperm in vivo. Biol. Reprod. 108, 197–203 (2023).
Toth, G. P., Stober, J. A., George, E. L., Read, E. J. & Smith, M. K. Sources of variation in the computer-assisted motion analysis of rat epididymal sperm. Reprod. Toxicol. 5, 487–495 (1991).
Pérez-Cerezales, S., Miranda, A. & Gutiérrez-Adán, A. Comparison of four methods to evaluate sperm DNA integrity between mouse caput and cauda epididymidis. Asian J. Androl. 14, 335–337 (2012).
Zhou, D., Suzuki, T., Asami, M. & Perry, A. C. F. Caput epididymidal mouse sperm support full development. Dev. Cell 50, 5–6 (2019).
Longenecker, G., Cho, K., Khillan, J. S. & Kulkarni, A. B. Cryopreservation protocols for genetically engineered mice. Curr. Protoc. 1, e138 (2021).
Diercks, A. K., Bürgers, H. F., Schwab, A. & Schenkel, J. Improved assessment of frozen/thawed mouse spermatozoa using fluorescence microscopy. J. Vet. Sci. 13, 315–322 (2012).
Van Der Horst, G., Maree, L. & Du Plessis, S. S. Current perspectives of CASA applications in diverse mammalian spermatozoa. Reprod. Fertil. Dev. 30, 875–888 (2018).
Bucher, K. et al. Multicolor flow cytometric analysis of cryopreserved bovine sperm: a tool for the evaluation of bull fertility. J. Dairy Sci. 102, 11652–11669 (2019).
Graham, J. K. Assessment of sperm quality: a flow cytometric approach. Anim. Reprod. Sci. 68, 239–247 (2001).
Holt, W. V. & Van Look, K. J. W. Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory test of semen quality. Reproduction 127, 527–535 (2004).
Ibănescu, I., Leiding, C. & Bollwein, H. Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen. J. Reprod. Dev. 64, 33–39 (2018).
Johannisson, A., Morrell, J. M. & Ntallaris, T. A combination of biomarkers for predicting stallion sperm fertility. Vet. Res. Commun. 48, 2157–2169 (2024).
Daigneault, B. W. et al. Enhanced fertility prediction of cryopreserved boar spermatozoa using novel sperm function assessment. Andrology 3, 558–568 (2015).
Sellem, E. et al. Use of combinations of in vitro quality assessments to predict fertility of bovine semen. Theriogenology https://doi.org/10.1016/j.theriogenology.2015.07.035 (2015).
Pang, W. et al. Establishment of a male fertility prediction model with sperm RNA markers in pigs as a translational animal model. J. Anim. Sci. Biotechnol. 9, 84 (2022).
Pang, W. K. et al. Heat shock protein family D member 1 in boar spermatozoa is strongly related to the litter size of inseminated sows. J. Anim. Sci. Biotechnol. 13, 42 (2022).
Bollwein, H. & Malama, E. Review: evaluation of bull fertility. Functional and molecular approaches. Animal 17, 100795 (2023).
Tanghe, S., Van Soom, A., Sterckx, V., Maes, D. & De Kruif, A. Assessment of different sperm quality parameters to predict in vitro fertility of bulls. Reprod. Domest. Anim. 37, 127–132 (2002).
WHO Laboratory Manual for the Examination and Processing of Human Semen (WHO, 2021).
Martinez, G. First-line evaluation of sperm parameters in mice (Mus musculus). Bio Protoc. 12, e4529 (2022).
Robb, G. W., Amann, R. P. & Killian, G. J. Daily sperm production and epididymal sperm reserves of pubertal and adult rats. J. Reprod. Fertil. 54, 103–107 (1978).
Liu, S. & Li, F. Cryopreservation of single-sperm: where are we today? Reprod. Biol. Endocrinol. 18, 41 (2020).
Du, Y., Xie, W. & Liu, C. in Methods in Enzymology Vol. 476 (eds Wassarman, P. M. & Soriano, P. M.) 37–52 (Elsevier, 2010).
Stein, P. & Schultz, R. M. in Methods in Enzymology Vol. 476 (eds Wassarman, P. M. & Soriano, P. M.) 251–262 (Elsevier, 2010).
Li, M. W., Willis, B. J., Griffey, S. M., Spearow, J. L. & Lloyd, K. C. K. Assessment of three generations of mice derived by ICSI using freeze-dried sperm. Zygote 17, 239–251 (2009).
Kuster, C. Sperm concentration determination between hemacytometric and CASA systems: why they can be different. Theriogenology 64, 614–617 (2005).
Christensen, P., Stryhn, H. & Hansen, C. Discrepancies in the determination of sperm concentration using Bürker-Türk, Thoma and Makler counting chambers. Theriogenology 63, 992–1003 (2005).
Brito, L. F. C. et al. Andrology laboratory review: evaluation of sperm concentration. Theriogenology 85, 1507–1527 (2016).
Yamamoto, T., Mori, S., Yoneyama, M., Imanishi, M. & Takeuchi, M. Evaluation of rat sperm by flow cytometry: simultaneous analysis of sperm count and sperm viability. J. Toxicol. Sci. 23, 373–378 (1998).
Farrell, P. B. B., Presicce, G. A. A., Brockett, C. C. C. & Foote, R. H. H. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 49, 871–879 (1998).
Zuvela, E. & Matson, P. Performance of four chambers to measure sperm concentration: results from an external quality assurance programme. Reprod. Biomed. Online 41, 671–678 (2020).
Hansen, C., Vermeiden, T. & Vermeiden, J. P. W. Comparison of FACSCount AF system, improved Neubauer hemocytometer, Corning 254 photometer, SpermVision, UltiMate and NucleoCounter SP-100 for determination of sperm concentration of boar semen. Theriogenology 66, 2188–2194 (2006).
Zinaman, M. J., Uhler, M. L., Vertuno, E., Fisher, S. G. & Clegg, E. D. Evaluation of computer-assisted semen analysis (CASA) with IDENT stain to determine sperm concentration. J. Androl. 17, 288–292 (1996).
Tardif, A. L., Farrell, P. B., Trouern-Trend, V., Simkin, M. E. & Foote, R. H. Use of Hoechst 33342 stain to evaluate live fresh and frozen bull sperm by computer-assisted analysis. J. Androl. 19, 201–206 (1998).
Firman, R. C., Cheam, L. Y. & Simmons, L. W. Sperm competition does not influence sperm hook morphology in selection lines of house mice. J. Evol. Biol. 24, 856–862 (2011).
Goossens, E., De Block, G. & Tournaye, H. Computer-assisted motility analysis of spermatozoa obtained after spermatogonial stem cell transplantation in the mouse. Fertil. Steril. 90, 1411–1416 (2008).
Weber, K. et al. New method for sperm evaluation by 3-dimensional laser scanning microscopy in different laboratory animal species. Int. J. Toxicol. 33, 353–361 (2014).
Firman, R. C. & Simmons, L. W. Sperm competition and the evolution of the sperm hook in house mice. J. Evol. Biol. 22, 2505–2511 (2009).
Yániz, J. L., Soler, C. & Santolaria, P. Computer assisted sperm morphometry in mammals: a review. Anim. Reprod. Sci. 156, 1–12 (2015).
Taloni, A. et al. Probing spermiogenesis: a digital strategy for mouse acrosome classification. Sci. Rep. 7, 3748 (2017).
Skinner, B. M. et al. A high-throughput method for unbiased quantitation and categorization of nuclear morphology. Biol. Reprod. 100, 1250–1260 (2019).
Davis, R. O., Gravance, C. G., Thal, D. M. & Miller, M. G. Automated analysis of toxicant-induced changes in rat sperm head morphometry. Reprod. Toxicol. 8, 521–529 (1994).
Sanchez, M. V., Bastir, M. & Roldan, E. R. S. Geometric morphometrics of rodent sperm head shape. PLoS ONE 8, e80607 (2013).
Van Der Horst, G. & Maree, L. SpermBlue: a new universal stain for human and animal sperm which is also amenable to automated sperm morphology analysis. Biotech. Histochem. 84, 299–308 (2009).
Kamieniczna, M., Stachowska, E., Augustynowicz, A., Woźniak, T. & Kurpisz, M. K. Human live spermatozoa morphology assessment using digital holographic microscopy. Sci. Rep. 12, 4846 (2022).
Bulkeley, E., Santistevan, A. C., Varner, D. & Meyers, S. Imaging flow cytometry to characterize the relationship between abnormal sperm morphologies and reactive oxygen species in stallion sperm. Reprod. Domest. Anim. 58, 10–19 (2023).
Hernández-Herrera, P., Abonza, V., Sánchez-Contreras, J., Darszon, A. & Guerrero, A. Deep learning-based classification and segmentation of sperm head and flagellum for image-based flow cytometry. Comput. Sist. 27, 1133–1145 (2023).
García-Vázquez, F., Gadea, J., Matás, C. & Holt, W. Importance of sperm morphology during sperm transport and fertilization in mammals. Asian J. Androl. 18, 844–850 (2016).
Stachecki, J. J., Ginsburg, K. A., Leach, R. E. & Armant, D. R. Computer-assisted semen analysis (CASA) of epididymal sperm from the domestic cat. J. Androl. 14, 60–65 (1993).
Aziz, N. et al. Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil. Steril. 81, 349–354 (2004).
Gravance, G. & Davis, R. O. Analysis (ASMA) in the rabbit. J. Androl. 16, 88–93 (1995).
Sekine, N., Yokota, S. & Oshio, S. Sperm morphology is different in two common mouse strains. BPB Rep. 4, 162–165 (2021).
Ohta, H., Sakaide, Y. & Wakayama, T. Age- and substrain-dependent sperm abnormalities in BALB/c mice and functional assessment of abnormal sperm by ICSI. Hum. Reprod. 24, 775–781 (2009).
Kot, M. C. & Handel, M. A. Binding of morphologically abnormal sperm to mouse egg zonae pellucidae in vitro. Gamete Res. 18, 57–66 (1987).
Krzanowska, H. Sperm head abnormalities in relation to the age and strain of mice. J. Reprod. Fertil. 62, 385–392 (1981).
Burruel, V. R., Yanagimachi, R. & Whitten, W. K. Normal mice develop from oocytes injected with spermatozoa with grossly misshapen heads. Biol. Reprod. 55, 709–714 (1996).
Kishikawa, H., Tateno, H. & Yanagimachi, R. Chromosome analysis of BALB/c mouse spermatozoa with normal and abnormal head morphology. Biol. Reprod. 61, 809–812 (1999).
Kumar, A., Prasad, J. K., Srivastava, N. & Ghosh, S. K. Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreserv. Biobank 17, 603–612 (2019).
Jin, B. et al. The mechanism by which mouse spermatozoa are injured during freezing. J. Reprod. Dev. 54, 265–269 (2008).
Love, C. C. Modern techniques for semen evaluation. Vet. Clin. North Am. Equine Pract. 32, 531–546 (2016).
Centola, G. M. Comparison of manual microscopic and computer-assisted methods for analysis of sperm count and motility. Arch. Androl. 36, 1–7 (1996).
Broekhuijse, M. L. W. J., Šostarić, E., Feitsma, H. & Gadella, B. M. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 76, 1473–1486 (2011).
Amann, R. P. & Waberski, D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81, 5–17 (2014).
Finelli, R., Leisegang, K., Tumallapalli, S., Henkel, R. & Agarwal, A. The validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic review. Transl. Androl. Urol. 10, 3069–3079 (2021).
Castellini, C., Dal Bosco, A., Ruggeri, S. & Collodel, G. What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertil. Steril. 96, 24–27 (2011).
won Choi, J. et al. An assessment tool for computer-assisted semen analysis (CASA) algorithms. Sci. Rep. 12, 16830 (2022).
Sapiro, R. et al. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol. Cell. Biol. 22, 6298–6305 (2002).
Van der Spoel, A. C. et al. Reversible infertility in male mice after oral administration of alkylated imino sugars: a nonhormonal approach to male contraception. Proc. Natl Acad. Sci. USA 99, 17173–17178 (2002).
Harris, T., Marquez, B., Suarez, S. & Schimenti, J. Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the sun domain-containing family of putative RNA methyltransferases. Biol. Reprod. 77, 376–382 (2007).
Boersma, A. et al. Influence of sperm cryopreservation on sperm motility and proAKAP4 concentration in mice. Reprod Med Biol 21, e12480 (2022).
Nishizono, H., Shioda, M., Takeo, T., Irie, T. & Nakagata, N. Decrease of fertilizing ability of mouse spermatozoa after freezing and thawing is related to cellular injury. Biol. Reprod. 71, 973–978 (2004).
Szczygiel, M. A., Kusakabe, H., Yanagimachi, R. & Whittingham, D. G. Separation of motile populations of spermatozoa prior to freezing is beneficial for subsequent fertilization in vitro: a study with various mouse strains. Biol. Reprod. 67, 287–292 (2002).
Yildiz, C. et al. Effects of cryopreservation on sperm quality, nuclear DNA integrity, in vitro fertilization, and in vitro embryo development in the mouse. Reproduction 133, 585–595 (2007).
Sztein, J. M., Farley, J. S. & Mobraaten, L. E. In vitro fertilization with cryopreserved inbred mouse sperm. Biol. Reprod. 63, 1774–1780 (2000).
Fernandez-Novo, A. et al. Effect of extender, storage time and temperature on kinetic parameters (CASA) on bull semen samples. Biology 10, 806 (2021).
Soler, C. et al. Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reprod. Fertil. Dev. 30, 924–934 (2018).
Ďuračka, M., Benko, F. & Tvrdá, E. Molecular markers: a new paradigm in the prediction of sperm freezability. Int. J. Mol. Sci. 24, 3379 (2023).
Galarza, D. A., López-Sebastián, A., Woelders, H., Blesbois, E. & Santiago-Moreno, J. Two-step accelerating freezing protocol yields a better motility, membranes and DNA integrities of thawed ram sperm than three-steps freezing protocols. Cryobiology 91, 84–89 (2019).
Li, M. W. & Lloyd, K. C. K. DNA fragmentation index (DFI) as a measure of sperm quality and fertility in mice. Sci. Rep. 10, 3833 (2020).
Saacke, R. G., Dalton, J. C., Nadir, S., Nebel, R. L. & Bame, J. H. Relationship of seminal traits and insemination time to fertilization rate and embryo quality. Anim. Reprod. Sci. 60–61, 663–677 (2000).
Fernández-Gonzalez, R. et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol. Reprod. 78, 761–772 (2008).
Gawecka, J. E. et al. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS ONE 8, e56385 (2013).
Leem, J., Bai, G. Y. & Oh, J. S. The capacity to repair sperm DNA damage in zygotes is enhanced by inhibiting WIP1 activity. Front. Cell Dev. Biol. 10, 841327 (2022).
Ramos-Ibeas, P. et al. Intracytoplasmic sperm injection using DNA-fragmented sperm in mice negatively affects embryo-derived embryonic stem cells, reduces the fertility of male offspring and induces heritable changes in epialleles. PLoS ONE 9, e95625 (2014).
Musson, R., Gasior, Ł, Bisogno, S. & Ptak, G. E. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum. Reprod. Update 28, 376–399 (2022).
Gajski, G. et al. Application of the comet assay for the evaluation of DNA damage in mature sperm. Mutat. Res. Rev. Mutat. Res. 788, 108398 (2021).
Sharma, R., Iovine, C., Agarwal, A. & Henkel, R. TUNEL assay—standardized method for testing sperm DNA fragmentation. Andrologia 53, 1–20 (2021).
Henkel, R., Hoogendijk, C. F., Bouic, P. J. D. & Kruger, T. F. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia 42, 305–313 (2010).
Fernández, J. L. et al. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J. Androl. 24, 59–66 (2003).
Yurchuk, T. O., Pavlovych, O. V. & Petrushko, M. P. Sperm DNA cryodamage in domestic and farm animals: detection methods and ways of DNA integrity improvement. Probl. Cryobiol. Cryomed. 32, 171–182 (2022).
Muratori, M. et al. Small variations in crucial steps of TUNEL assay coupled to flow cytometry greatly affect measures of sperm DNA fragmentation. J. Androl. 31, 336–345 (2010).
Chatzimeletiou, K. et al. Evaluation of sperm DNA fragmentation using two different methods: TUNEL via fluorescence microscopy, and flow cytometry. Medicina 59, 1313 (2023).
Evenson, D. & Jost, L. Sperm chromatin structure assay for fertility assessment. Curr Protoc. Cytom. 13, 7.13.1–7.13.27 (2000).
Javed, A., Talkad, M. S. & Ramaiah, M. K. Evaluation of sperm DNA fragmentation using multiple methods: a comparison of their predictive power for male infertility. Clin. Exp. Reprod. Med. 46, 211 (2019).
Evenson, D. P. The sperm chromatin structure assay (SCSA) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim. Reprod. Sci. 169, 56–75 (2016).
Martínez-Pastor, F., Del Rocío Fernández-Santos, M., Domínguez-Rebolledo, Á, Esteso, M. & Garde, J. DNA status on thawed semen from fighting bull: a comparison between the SCD and the SCSA tests. Reprod. Domest. Anim. 44, 424–431 (2009).
Erenpreisa, J. et al. Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytometry A 52, 19–27 (2003).
Erenpreiss, J., Bars, J., Lipatnikova, V., Erenpreisa, J. & Zalkalns§, J. Comparative study of cytochemical tests for sperm chromatin integrity. J. Androl. 22, 45–53 (2001).
Klaude, M., Eriksson, S., Nygren, J. & Ahnström, G. The comet assay: mechanisms and technical considerations. Mutat. Res. 363, 89–96 (1996).
Simon, L. & Carrell, D. T. in Spermatogenesis: Methods and Protocols (eds Carrell, D. T. & Aston, K. I.) 137–146 (Humana, 2013); https://doi.org/10.1007/978-1-62703-038-0_13
Tarozzi, N., Bizzaro, D., Flamigni, C. & Borini, A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod. Biomed. Online 14, 746–757 (2007).
Simon, L. et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum. Reprod. 29, 904–917 (2014).
de Boer, P., de Vries, M. & Ramos, L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 3, 174–202 (2015).
Agudo-Rios, C. et al. Sperm chromatin status and DNA fragmentation in mouse species with divergent mating systems. Int. J. Mol. Sci. 24, 15954 (2023).
Bungum, M., Bungum, L. & Giwercman, A. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J. Androl. 13, 69–75 (2011).
Sakkas, D. & Alvarez, J. G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil. Steril. 93, 1027–1036 (2010).
Liu, L., Sansing, S. R., Morse, I. S. & Pritchett-Corning, K. R. Mouse sperm cryopreservation and recovery using the I·Cryo Kit. J. Vis. Exp. https://doi.org/10.3791/3713 (2011).
Tao, J., Critser, E. S. & Critser, J. K. Evaluation of mouse sperm acrosomal status and viability by flow cytometry. Mol. Reprod. Dev 36, 183–194 (1993).
Somfai, T. et al. Simultaneous evaluation of viability and acrosome integrity of mouse spermatozoa using light microscopy. Biotech. Histochem. 77, 117–120 (2002).
Hecht, B. R. & Jeyendran, R. S. The hypo-osmotic swelling test: is it a sperm vitality or a viability assay? F S Sci. 3, 18–20 (2022).
Check, J. H. et al. The hypoosmotic swelling test as a useful adjunct to the semen analysis to predict fertility potential. Fertil. Steril. 52, 159–161 (1989).
Ramu, S. & Jeyendran, R. S. in Methods in Molecular Biology (eds Carrell, D. T. & Aston, K. I.) 21–25 (Springer, 2013).
Petrunkina, A. M., Waberski, D., Günzel-Apel, A. R. & Töpfer-Petersen, E. Determinants of sperm quality and fertility in domestic species. Reproduction 134, 3–17 (2007).
Dott, H. M. & Foster, G. C. A technique for studying the morphology of mammalian spermatozoa which are eosinophilic in a differential ‘life-dead’ stain. J. Reprod. Fertil. 29, 443–445 (1972).
Kovács, A. & Foote, R. H. Viability and acrosome staining of bull, boar and rabbit spermatozoa. Biotech. Histochem. 67, 119–124 (1992).
Tartaglione, C. M. & Ritta, M. N. Prognostic value of spermatological parameters as predictors of in vitro fertility of frozen-thawed bull semen. Theriogenology 62, 1245–1252 (2004).
Love, C. C. Sperm quality assays: how good are they? The horse perspective. Anim. Reprod. Sci. 194, 63–70 (2018).
Pintado, B., De La Fuente, J. & Roldan, E. R. S. Permeability of boar and bull spermatozoa to the nucleic acid stains propidium iodide or Hoechst 33258, or to eosin: accuracy in the assessment of cell viability. J. Reprod. Fertil. 118, 145–152 (2000).
Hallap, T., Nagy, S., Jaakma, U., Johannisson, A. & Rodriguez-Martinez, H. Usefulness of a triple fluorochrome combination Merocyanine 540/Yo-Pro 1/Hoechst 33342 in assessing membrane stability of viable frozen-thawed spermatozoa from Estonian Holstein AI bulls. Theriogenology 65, 1122–1136 (2006).
Althouse, G. C. & Hopkins, S. M. Assessment of boar sperm viability using a combination of two fluorophores. Theriogenology 43, 595–603 (1995).
Silva, P. F. N. & Gadella, B. M. Detection of damage in mammalian sperm cells. Theriogenology 65, 958–978 (2006).
Nunez, R., Murphy, T. F., Huang, H. F. & Barton, B. E. Use of SYBR14, 7-amino-actinomycin D, and JC-1 in assessing sperm damage from rats with spinal cord injury. Cytometry A 61A, 56–61 (2004).
Garner, D., Johnson, L., Yue, S., Roth, B. & Haugland, R. Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide. J. Androl. 85, 620–629 (1994).
Garner, D. L. & Johnson, L. A. Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol. Reprod. 53, 276–284 (1995).
Nagy, S., Jansen, J., Topper, E. K. & Gadella, B. M. A triple-stain flow cytometric method to assess plasma-and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 68, 1828–1835 (2003).
Marchetti, C. et al. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum. Reprod. 19, 2267–2276 (2004).
Gallon, F., Marchetti, C., Jouy, N. & Marchetti, P. The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil. Steril. 86, 1526–1530 (2006).
Mukai, C. & Okuno, M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 71, 540–547 (2004).
Miki, K. et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl Acad. Sci. USA 101, 16501–16506 (2004).
Giaccagli, M. M. et al. Capacitation-induced mitochondrial activity is required for sperm fertilizing ability in mice by modulating hyperactivation. Front. Cell Dev. Biol. 9, 767161 (2021).
Córdoba, M., Mora, N. & Beconi, M. T. Respiratory burst and NAD(P)H oxidase activity are involved in capacitation of cryopreserved bovine spermatozoa. Theriogenology 65, 882–892 (2006).
Ramió-Lluch, L. et al. ‘In vitro’ capacitation and acrosome reaction are concomitant with specific changes in mitochondrial activity in boar sperm: evidence for a nucleated mitochondrial activation and for the existence of a capacitation-sensitive subpopulational structure. Reprod. Domest. Anim. 46, 664–673 (2011).
Yeste, M. Sperm cryopreservation update: cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 85, 47–64 (2016).
Garner, D. L., Thomas, C. A., Joerg, H. W., DeJarnette, J. M. & Marshall, C. E. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 57, 1401–1406 (1997).
Gillan, L., Evans, G. & Maxwell, W. M. C. Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology 63, 445–457 (2005).
Siu, K. K., Serrão, V. H. B., Ziyyat, A. & Lee, J. E. The cell biology of fertilization: gamete attachment and fusion. J. Cell Biol. 220, e202102146 (2021).
Seol, D. W. et al. Sperm hyaluronidase is critical to mammals’ fertilization for its ability to disperse cumulus–oocyte complex layer. Asian J. Androl. 24, 411–415 (2022).
Martin-Deleon, P. A. Germ-cell hyaluronidases: their roles in sperm function. Int. J. Androl. 34, e306–e318 (2011).
Visconti, P. E. et al. Capacitation of mouse spermatozoa pathway. Regulation 1150, 1139–1150 (1995).
De La Vega-Beltran, J. L. et al. Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction. J. Biol. Chem. 287, 44384–44393 (2012).
Jaiswal, B. S., Cohen-Dayag, A., Tur-Kaspa, I. & Eisenbach, M. Sperm capacitation is, after all, a prerequisite for both partial and complete acrosome reaction. FEBS Lett. 427, 309–313 (1998).
Yoshida, N. & Perry, A. C. F. Piezo-actuated mouse intracytoplasmic sperm injection (ICSI). Nat. Protoc. 2, 296–304 (2007).
Fernández-González, R. et al. Successful ICSI in mice using caput epididymal spermatozoa. Front. Cell Dev. Biol. 7, 346 (2019).
Fuller, S. J. & Whittingham, D. G. Capacitation-like changes occur in mouse spermatozoa cooled to low temperatures. Mol. Reprod. Dev. 46, 318–324 (1997).
Navarrete, F. A. et al. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J. Cell. Physiol. 230, 1758–1769 (2015).
Balbach, M. et al. Metabolic changes in mouse sperm during capacitation. Biol. Reprod. 103, 791–801 (2020).
Goodson, S. G., Zhang, Z., Tsuruta, J. K., Wang, W. & O’Brien, D. A. Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol. Reprod. 84, 1207–1215 (2011).
Suarez, S. S. & Ho, H. C. Hyperactivated motility in sperm. Reprod. Domest. Anim. 38, 119–124 (2003).
Petrunkina, A. & Harrison, R. Fluorescence technologies for evaluating male gamete (dys)function. Reprod. Domest. Anim. 48, 11–24 (2013).
Malama, E. et al. Development of a four-color flow cytometric assay for the assessment of plasma membrane remodeling and cholesterol efflux during bovine sperm capacitation. J. Reprod. Med. Endocrinol. 21, 26 (2024).
Grunewald, S., Fitzl, G. & Springsguth, C. Induction of ultra-morphological features of apoptosis in mature and immature sperm. Asian J. Androl. 18, 533–537 (2016).
Demchenko, A. P. Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology 65, 157–172 (2013).
Muratori, M. et al. Annexin V binding and merocyanine staining fail to detect human sperm capacitation. J. Androl. 25, 797–810 (2004).
Gadella, B. M. & Harrison, R. A. P. Capacitation induces cyclic adenosine 3′,5′-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cell. Biol. Reprod. 67, 340–350 (2002).
Lee, M. A., Kopf, G. S. & Storey, B. T. Effects of phorbol esters and a diacylglycerol on the mouse sperm acrosome reaction induced by the zona pellucida. Biol. Reprod. 36, 617–627 (1987).
Maxwell, W. M. C. & Johnson, L. A. Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling, or cryopreservation. Mol. Reprod. Dev 46, 408–418 (1997).
Devlin, D. J. et al. Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defects. Biol. Reprod. 102, 1234–1247 (2020).
Ferreira, J. J. et al. Increased mitochondrial activity upon CatSper channel activation is required for mouse sperm capacitation. Redox Biol. 48, 102176 (2021).
Tourzani, D. A. et al. Caput ligation renders immature mouse sperm motile and capable to undergo cAMP-dependent phosphorylation. Int. J. Mol. Sci. 22, 10241 (2021).
Yanagimachi, R., Kamiguchi, Y., Mikamo, K., Suzuki, F. & Yanagimachi, H. Maturation of spermatozoa in the epididymis of the Chinese hamster. Am. J. Anat. 172, 317–330 (1985).
Zaneveld, L. J., De Jonge, C. J., Anderson, R. A. & Mack, S. R. Human sperm capacitation and the acrosome reaction. Hum. Reprod. 6, 1265–1274 (1991).
Chang, M. C. The meaning of sperm capacitation. a historical perspective. J. Androl. 5, 45–50 (1984).
Gervasi, M. G. & Visconti, P. E. Chang’s meaning of capacitation: a molecular perspective. Mol. Reprod. Dev 83, 860–874 (2016).
Abou-Haila, A. & Tulsiani, D. R. P. Mammalian sperm acrosome: formation, contents, and function. Arch. Biochem. Biophys. 379, 173–182 (2000).
Ito, C. & Toshimori, K. Acrosome markers of human sperm. Anat. Sci. Int. 91, 128–142 (2016).
Larson, J. L. & Miller, D. J. Simple histochemical stain for acrosomes on sperm from several species. Mol. Reprod. Dev. 52, 445–449 (1999).
Lybaert, P., Danguy, A., Leleux, F., Meuris, S. & Lebrun, P. Improved methodology for the detection and quantification of the acrosome reaction in mouse spermatozoa. Histol. Histopathol. 24, 999–1007 (2009).
Thomas, C. A., Garner, D. L., DeJarnette, J. M. & Marshall, C. E. Fluorometric assessments of acrosomal integrity and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 56, 991–998 (1997).
Petrunkina, A. M. & Harrison, R. A. P. Cytometric solutions in veterinary andrology: developments, advantages, and limitations. Cytometry A 79A, 338–348 (2011).
Boe-Hansen, G. B. & Satake, N. An update on boar semen assessments by flow cytometry and CASA. Theriogenology 137, 93–103 (2019).
Yeste, M. et al. The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 17 °C is concomitant with a higher cryotolerance of boar spermatozoa. PLoS ONE 9, e90887 (2014).
Brum, A. M., Thomas, A. D., Sabeur, K. & Ball, B. A. Evaluation of Coomassie blue staining of the acrosome of equine and canine spermatozoa. Am. J. Vet. Res. 67, 358–362 (2006).
Carver-Ward, J. A. et al. Pentoxifylline potentiates ionophore (A23187) mediated acrosome reaction in human sperm: flow cytometric analysis using CD46 antibody. Hum. Reprod. 9, 71–76 (1994).
Mizuno, M., Harris, C. L., Johnson, P. M. & Morgan, B. P. Rat Membrane cofactor protein (MCP; CD46) is expressed only in the acrosome of developing and mature spermatozoa and mediates binding to immobilized activated C31. Biol. Reprod. 71, 1374–1383 (2004).
Kawai, Y., Hata, T., Suzuki, O. & Matsuda, J. The relationship between sperm morphology and in vitro fertilization ability in mice. J. Reprod. Dev. 52, 561–568 (2006).
Nakao, S., Takeo, T., Watanabe, H., Kondoh, G. & Nakagata, N. Successful selection of mouse sperm with high viability and fertility using microfluidics chip cell sorter. Sci. Rep. 10, 8862 (2020).
Kelley, K. A. in Methods in Enzymology Vol. 476 (eds Wassarman, P. M. & Soriano, P. M.) 229–250 (Elsevier, 2010).
Tomar, A. et al. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Nature 630, 720–727 (2024).
Hitit, M. & Memili, E. Sperm signatures of fertility and freezability. Anim. Reprod. Sci. 247, 107147 (2022).
Bustamante-Filho, I. C., Pasini, M. & Moura, A. A. Spermatozoa and seminal plasma proteomics: too many molecules, too few markers. The case of bovine and porcine semen. Anim. Reprod. Sci. 247, 107075 (2022).
Allen, R. L., O’Brien, D. A., Jones, C. C., Rockett, D. L. & Eddy, E. M. Expression of heat shock proteins by isolated mouse spermatogenic cells. Mol. Cell. Biol. 8, 3260–3266 (1988).
Walsh, A. et al. Identification of the molecular chaperone, heat shock protein 1 (chaperonin 10), in the reproductive tract and in capacitating spermatozoa in the male mouse. Biol. Reprod. 78, 983–993 (2008).
Zhang, X. G. et al. Association of heat shock protein 70 with motility of frozen-thawed sperm in bulls. Czech J. Anim. Sci. 60, 256–262 (2015).
Zhang, X. G. et al. Association of heat shock protein 90 with motility of post-thawed sperm in bulls. Cryobiology 70, 164–169 (2015).
Pardede, B. P., Kusumawati, A., Pangestu, M. & Purwantara, B. Bovine sperm HSP-70 molecules: a potential cryo-tolerance marker associated with semen quality and fertility rate. Front. Vet. Sci. 10, 1167594 (2023).
Nazari, H., Ahmadi, E., Hosseini Fahraji, H., Afzali, A. & Davoodian, N. Cryopreservation and its effects on motility and gene expression patterns and fertilizing potential of bovine epididymal sperm. Vet. Med. Sci. 7, 127–135 (2021).
Yathish, H. M. et al. Profiling of sperm gene transcripts in crossbred (Bos taurus × Bos indicus) bulls. Anim. Reprod. Sci. 177, 25–34 (2017).
Wang, M. et al. Cryoprotectants-free vitrification and conventional freezing of human spermatozoa: a comparative transcript profiling. Int. J. Mol. Sci. 23, 3047 (2022).
Arroyo, V. S., Iosa, M. & Antonucci, G. Predicting male infertility using artificial neural networks: a review of the literature. Healthcare 12, 781 (2024).
You, J. B. et al. Machine learning for sperm selection. Nat. Rev. Urol. 18, 387–403 (2021).
Wang, R. et al. Artificial intelligence in reproductive medicine. Reproduction 158, R139–R154 (2019).
Gonzalez-Castro, R. A., Peña, F. J. & Herickhoff, L. A. Validation of a new multiparametric protocol to assess viability, acrosome integrity and mitochondrial activity in cooled and frozen thawed boar spermatozoa. Cytometry B 102, 400–408 (2022).
Fisher, H. S., Giomi, L., Hoekstra, H. E. & Mahadevan, L. The dynamics of sperm cooperation in a competitive environment. Proc. Biol. Sci. 281, 20140296 (2014).
