Bi-functional Caulis polygoni multiflori inhibits Staphylococcus aureus and potentiates the activity of erythromycin in vitro

bi-functional-caulis-polygoni-multiflori-inhibits-staphylococcus-aureus-and-potentiates-the-activity-of-erythromycin-in-vitro
Bi-functional Caulis polygoni multiflori inhibits Staphylococcus aureus and potentiates the activity of erythromycin in vitro

References

  1. Touaitia, R. et al. Staphylococcus aureus: A review of the pathogenesis and virulence Mechanisms. Antibiotics (Basel). 14(5), 470, (2025). https://doi.org/10.3390/antibiotics14050470

  2. Tong, S. Y. C., Fowler, V. G. Jr, Skalla, L. & Holland, T. L. Management of Staphylococcus aureus bacteremia: A review. JAMA 334 (9), 798–808. https://doi.org/10.1001/jama.2025.4288 (2025).

    Google Scholar 

  3. Foster, T. J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 41 (3), 430–449 (2017).

    Google Scholar 

  4. Jiang, Y. et al. Genomic and phenotypic adaptations of methicillin resistant Staphylococcus aureus during Vancomycin therapy. Sci. Rep. 15 (1), 15346. https://doi.org/10.1038/s41598-025-99639-9 (2025).

    Google Scholar 

  5. Pengfei, S. et al. & Yong W. Novel antibiotics against Staphylococcus aureus without detectable resistance by targeting proton motive force and FtsH. MedComm2020, 6(1), e70046 https://doi.org/10.1002/mco2.70046 (2025).

    Google Scholar 

  6. Shi, J. et al. Non-Membrane active peptide resensitizes MRSA to β-Lactam antibiotics and inhibits S. aureus virulence. Adv. Sci. (Weinh). 12 (15), e2416260. https://doi.org/10.1002/advs.202416260 (2025).

    Google Scholar 

  7. Liu, X. et al. Differences in Pharmacokinetic/Pharmacodynamic parameters of tedizolid against VRE and MRSA. Pharm. Res. 40 (1), 187–196. https://doi.org/10.1007/s11095-022-03425-5 (2023).

    Google Scholar 

  8. Hasannejad-Bibalan, M., Mojtahedi, A., Biglari, H., Halaji, M. & Ebrahim-Saraie, S. Antibacterial activity of Tedizolid, a novel Oxazolidinone against Methicillin-Resistant Staphylococcus aureus: A systematic review and Meta-Analysis. Microb. Drug Resist. 25 (9), 1330–1337. https://doi.org/10.1089/mdr.2018.0457 (2019).

    Google Scholar 

  9. Morrisette, T. et al. Evaluation of Omadacycline alone and in combination with Rifampin against Staphylococcus aureus and Staphylococcus epidermidis in an in vitro Pharmacokinetic/Pharmacodynamic biofilm model. Antimicrob. Agents Chemother. 67 (6), e0131722. https://doi.org/10.1128/aac.01317-22 (2023).

    Google Scholar 

  10. Wang, J. et al. Effect of Emodin on Streptococcus suis by targeting β-ketoacyl-acyl carrier protein synthase Ⅱ. Phytomedicine 143, 56821 (2025).

    Google Scholar 

  11. Yang, W. et al. Traditional Chinese medicine Tanreqing targets both cell division and virulence in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 12 (884045). https://doi.org/10.3389/fcimb.2022.884045 (2022).

  12. Liang, Y., Zhang, H., Dai, S., Cong, Y. & Wu, W. Inhibiting Staphylococcus aureus virulence factors: advances in traditional Chinese medicines and active compounds. Curr. Microbiol. 82 (6), 247. https://doi.org/10.1007/s00284-025-04236-8 (2025).

    Google Scholar 

  13. Chen, Y. et al. Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One. 11 (4), e0153468. https://doi.org/10.1371/journal.pone.0153468 (2016).

    Google Scholar 

  14. Abreu, A. C., Saavedra, M. J., Simões, L. C. & Simões, M. Combinatorial approaches with selected phytochemicals to increase antibiotic efficacy against Staphylococcus aureus biofilms. Biofouling 32 (9), 1103–1114. https://doi.org/10.1080/08927014.2016.1232402 (2016).

    Google Scholar 

  15. Brackman, G. et al. The quorum sensing inhibitor Hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci. Rep. 6, 20321. https://doi.org/10.1038/srep20321 (2016).

    Google Scholar 

  16. Li, C. X., Liu, Y., Zhang, Y. Z., Li, J. C. & Lai, J. Astragalus polysaccharide: a review of its Immunomodulatory effect. Arch. Pharm. Res. 45 (6), 367–389. https://doi.org/10.1007/s12272-022-01393-3 (2022).

    Google Scholar 

  17. Kachur, K. & Suntres, Z. E. The antimicrobial properties of ginseng and ginseng extracts. Expert Rev. Anti Infect. Ther. 14 (1), 81–94. https://doi.org/10.1586/14787210.2016.1118345 (2016).

    Google Scholar 

  18. Blundell, R. et al. The phytochemistry of ganoderma species and their medicinal potentials. Am. J. Chin. Med. 51 (4), 859–882. https://doi.org/10.1142/S0192415X23500404 (2023).

    Google Scholar 

  19. Yang, W. et al. JY Shi. Study on bacteriostasis activity of total flavonoids from Gaulis polygoni multifori. Scinece Technol. Food Ind. 9 (33), 111–113 (2012).

    Google Scholar 

  20. Feng, S. et al. Hypoglycemic activities of commonly-used traditional Chinese herbs. Am. J. Chin. Med. 41 (4), 849–864 (2013).

    Google Scholar 

  21. Fattorusso, R., Frutos, S., Sun, X., Sucher, N. J. & Pellecchia, M. Traditional Chinese medicines with caspase-inhibitory activity. Phytomedicine 13 (1–2), 16–22 (2006).

    Google Scholar 

  22. Chen, F. P. et al. Prescriptions of Chinese herbal medicines for insomnia in Taiwan during 2002. Evid. Based Complement. Alternat. Med. 2011, 236341 (2011).

  23. Zuo, G. Y. et al. Screening of Chinese medicinal plants for Inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J. Ethnopharmacol. 120 (2), 287–290 (2008).

    Google Scholar 

  24. Tüzemen, N. Ü. et al. Synergistic antibacterial activity of ceftazidime-avibactam in combination with colistin, gentamicin, amikacin, and fosfomycin against carbapenem-resistant Klebsiella pneumoniae. Sci. Rep. 14 (1), 17567. https://doi.org/10.1038/s41598-024-67347-5 (2024).

    Google Scholar 

  25. Funk, B. et al. Efficacy and potential use of novel sustained release fillers as intracanal medicaments against Enterococcus faecalis biofilm in vitro. BMC Oral Health. 19 (1), 190 (2019).

    Google Scholar 

  26. Soltani, R., Khalili, H. & Shafiee, F. Double-disk synergy test for detection of synergistic effect between antibiotics against nosocomial strains of Staphylococcus aureus. J. Res. Pharm. Pract. 1 (1), 21–24 (2012).

    Google Scholar 

  27. Wu, D. et al. Purification and characterization of bacteriocin produced by a strain of Lacticaseibacillus rhamnosus ZFM216. Front. Microbiol. 13, 1050807 (2022).

    Google Scholar 

  28. Krishnan, S., Venkatachalam, P., Shanmugam, S. R. & Paramasivam, N. Fractional inhibitory concentration of bio-actives from agricultural waste disassembles biofilms and quenches virulence of nosocomial pathogens. J. Med. Microbiol. 74 (3), 001980 (2025).

    Google Scholar 

  29. Surana, A. et al. Comparative evaluation of minimal inhibitory concentration and minimal bactericidal concentration of various herbal irrigants against Enterococcus faecalis. J. Conserv. Dent. Endod. 27 (7), 780–784. https://doi.org/10.4103/JCDE.JCDE_349_23 (2024).

    Google Scholar 

  30. Yan, Y. et al. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiot. (Basel). 10 (3), 318 (2021).

    Google Scholar 

  31. Hallmann, L. Antibacterial polysaccharides in dental implantology. Mar. Drugs. 23 (8), 321. https://doi.org/10.3390/md23080321 (2025).

    Google Scholar 

  32. Mbeng Obame, R. B. et al. Targeted discovery of sesquiterpene Indole alkaloids from Greenwayodendron suaveolens. Phytochemistry 241, 114664. https://doi.org/10.1016/j.phytochem.2025.114664 (2026).

  33. Ciriminna, R. et al. Pagliaro M. Citrus flavonoids as antimicrobials. Chem. Biodivers. 22 (6), e202403210. https://doi.org/10.1002/cbdv.202403210 (2025).

    Google Scholar 

  34. Moran, G. J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl. J. Med. 355 (7), 666–674. https://doi.org/10.1056/NEJMoa055356 (2006).

    Google Scholar 

  35. Guo, Y., Song, G., Sun, M., Wang, J. & Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 10, 107. https://doi.org/10.3389/fcimb.2020.00107 (2020).

  36. CHINET. (ed China Antimicrobial Resistance Surveillance System). (2022).

  37. Shariati, A. et al. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative Staphylococci strains: a systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 9 (9), 56. https://doi.org/10.1186/s13756-020-00714-9 (2020).

    Google Scholar 

  38. Daum, R. S. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N Engl. J. Med. 357 (4), 380–390. https://doi.org/10.1056/NEJMcp070747 (2007).

    Google Scholar 

  39. Babu Rajendran, N. et al. Mandatory surveillance and outbreaks reporting of the WHO priority pathogens for research & discovery of new antibiotics in European countries. Clin. Microbiol. Infect. 26 (7), 943.e1–943.e6 (2020).

  40. Wang, J., Zhang, Z., Mei, X., Xu, Y. & Feng, Z. Research progress on antibacterial effect and mechanism of flavonoids. Jiangsu Agricultural Sci. 51 (1), 1–8 (2023).

    Google Scholar 

  41. Ren, X. et al. Natural flavone hispidulin protects mice from Staphylococcus aureus pneumonia by Inhibition of α-hemolysin production via targeting AgrAC. Microbiol. Res. 261, 127071. https://doi.org/10.1016/j.micres.2022.127071 (2022).

  42. Wang, T., Zhang, P., Lv, H., Deng, X. & Wang, J. A. Natural dietary flavone myricetin as an α-hemolysin inhibitor for controlling Staphylococcus aureus infection. Front. Cell. Infect. Microbiol. 10, 330. https://doi.org/10.3389/fcimb.2020.00330 (2020).

  43. Bian, N. et al. 7,8-Dihydroxyflavone attenuates the virulence of Staphylococcus aureus by inhibiting alpha-hemolysin. World J. Microbiol. Biotechnol. 38 (11), 200. https://doi.org/10.1007/s11274-022-03378-2 (2022).

    Google Scholar 

  44. Das, M. C. et al. Vitexin alters Staphylococcus aureus surface hydrophobicity to obstruct biofilm formation. Microbiol. Res. 263, 127126. https://doi.org/10.1016/j.micres.2022.127126 (2022).

  45. Yang, W. et al. Study on bacteriostasis activity of total flavonoids from Gau/is polygoni multifori. Sci. Technol. Food Ind. 33 (9), 111–113 (2012).

    Google Scholar 

  46. Ishak, A., Mazonakis, N., Spernovasilis, N., Akinosoglou, K. & Tsioutis, C. Bactericidal versus bacteriostatic antibacterials: clinical significance, differences and synergistic potential in clinical practice. J. Antimicrob. Chemother. 80 (1), 1–17. https://doi.org/10.1093/jac/dkae380 (2025).

    Google Scholar 

  47. Sen, C. K., Roy, S., Mathew-Steiner, S. S. & Gordillo, G. M. Biofilm management in wound care. Plast. Reconstr. Surg. 148 (2), 275e–288e. https://doi.org/10.1097/PRS.0000000000008142 (2021).

    Google Scholar 

  48. Percival, S. L., McCarty, S. M. & Lipsky, B. Biofilms and wounds: an overview of the evidence. Adv. Wound Care (New Rochelle). 4 (7), 373–381. https://doi.org/10.1089/wound.2014.0557 (2015).

    Google Scholar 

  49. Percival, S. L., Vuotto, C., Donelli, G. & Lipsky, B. A. Biofilms and wounds: an identification algorithm and potential treatment options. Adv. Wound Care (New Rochelle). 4 (7), 389–397. https://doi.org/10.1089/wound.2014.0574 (2015).

    Google Scholar 

  50. Choi, M. et al. Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. Int. J. Biol. Macromol. 142, 680–692. https://doi.org/10.1016/j.ijbiomac.2019.10.009 (2020).

    Google Scholar 

  51. Hurlow, J. et al. Clinical biofilms: A challenging frontier in wound care. Adv. Wound Care (New Rochelle). 4 (5), 295–301. https://doi.org/10.1089/wound.2014.0567 (2015).

    Google Scholar 

  52. da Silva, P. M. et al. Napoleão TH. Punica granatum Sarcotesta lectin (PgTeL) impairs growth, structure, viability, aggregation, and biofilm formation ability of Staphylococcus aureus clinical isolates. Int. J. Biol. Macromol. 123, 600–608. https://doi.org/10.1016/j.ijbiomac.2018.11.030 (2019).

    Google Scholar 

  53. Idrees, M., Sawant, S., Karodia, N. & Rahman, A. Staphylococcus aureus biofilm: Morphology, Genetics, pathogenesis and treatment strategies. Int. J. Environ. Res. Public. Health. 18 (14), 7602. https://doi.org/10.3390/ijerph18147602 (2021).

    Google Scholar 

Download references