References
-
Touaitia, R. et al. Staphylococcus aureus: A review of the pathogenesis and virulence Mechanisms. Antibiotics (Basel). 14(5), 470, (2025). https://doi.org/10.3390/antibiotics14050470
-
Tong, S. Y. C., Fowler, V. G. Jr, Skalla, L. & Holland, T. L. Management of Staphylococcus aureus bacteremia: A review. JAMA 334 (9), 798–808. https://doi.org/10.1001/jama.2025.4288 (2025).
-
Foster, T. J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 41 (3), 430–449 (2017).
-
Jiang, Y. et al. Genomic and phenotypic adaptations of methicillin resistant Staphylococcus aureus during Vancomycin therapy. Sci. Rep. 15 (1), 15346. https://doi.org/10.1038/s41598-025-99639-9 (2025).
-
Pengfei, S. et al. & Yong W. Novel antibiotics against Staphylococcus aureus without detectable resistance by targeting proton motive force and FtsH. MedComm2020, 6(1), e70046 https://doi.org/10.1002/mco2.70046 (2025).
-
Shi, J. et al. Non-Membrane active peptide resensitizes MRSA to β-Lactam antibiotics and inhibits S. aureus virulence. Adv. Sci. (Weinh). 12 (15), e2416260. https://doi.org/10.1002/advs.202416260 (2025).
-
Liu, X. et al. Differences in Pharmacokinetic/Pharmacodynamic parameters of tedizolid against VRE and MRSA. Pharm. Res. 40 (1), 187–196. https://doi.org/10.1007/s11095-022-03425-5 (2023).
-
Hasannejad-Bibalan, M., Mojtahedi, A., Biglari, H., Halaji, M. & Ebrahim-Saraie, S. Antibacterial activity of Tedizolid, a novel Oxazolidinone against Methicillin-Resistant Staphylococcus aureus: A systematic review and Meta-Analysis. Microb. Drug Resist. 25 (9), 1330–1337. https://doi.org/10.1089/mdr.2018.0457 (2019).
-
Morrisette, T. et al. Evaluation of Omadacycline alone and in combination with Rifampin against Staphylococcus aureus and Staphylococcus epidermidis in an in vitro Pharmacokinetic/Pharmacodynamic biofilm model. Antimicrob. Agents Chemother. 67 (6), e0131722. https://doi.org/10.1128/aac.01317-22 (2023).
-
Wang, J. et al. Effect of Emodin on Streptococcus suis by targeting β-ketoacyl-acyl carrier protein synthase Ⅱ. Phytomedicine 143, 56821 (2025).
-
Yang, W. et al. Traditional Chinese medicine Tanreqing targets both cell division and virulence in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 12 (884045). https://doi.org/10.3389/fcimb.2022.884045 (2022).
-
Liang, Y., Zhang, H., Dai, S., Cong, Y. & Wu, W. Inhibiting Staphylococcus aureus virulence factors: advances in traditional Chinese medicines and active compounds. Curr. Microbiol. 82 (6), 247. https://doi.org/10.1007/s00284-025-04236-8 (2025).
-
Chen, Y. et al. Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One. 11 (4), e0153468. https://doi.org/10.1371/journal.pone.0153468 (2016).
-
Abreu, A. C., Saavedra, M. J., Simões, L. C. & Simões, M. Combinatorial approaches with selected phytochemicals to increase antibiotic efficacy against Staphylococcus aureus biofilms. Biofouling 32 (9), 1103–1114. https://doi.org/10.1080/08927014.2016.1232402 (2016).
-
Brackman, G. et al. The quorum sensing inhibitor Hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci. Rep. 6, 20321. https://doi.org/10.1038/srep20321 (2016).
-
Li, C. X., Liu, Y., Zhang, Y. Z., Li, J. C. & Lai, J. Astragalus polysaccharide: a review of its Immunomodulatory effect. Arch. Pharm. Res. 45 (6), 367–389. https://doi.org/10.1007/s12272-022-01393-3 (2022).
-
Kachur, K. & Suntres, Z. E. The antimicrobial properties of ginseng and ginseng extracts. Expert Rev. Anti Infect. Ther. 14 (1), 81–94. https://doi.org/10.1586/14787210.2016.1118345 (2016).
-
Blundell, R. et al. The phytochemistry of ganoderma species and their medicinal potentials. Am. J. Chin. Med. 51 (4), 859–882. https://doi.org/10.1142/S0192415X23500404 (2023).
-
Yang, W. et al. JY Shi. Study on bacteriostasis activity of total flavonoids from Gaulis polygoni multifori. Scinece Technol. Food Ind. 9 (33), 111–113 (2012).
-
Feng, S. et al. Hypoglycemic activities of commonly-used traditional Chinese herbs. Am. J. Chin. Med. 41 (4), 849–864 (2013).
-
Fattorusso, R., Frutos, S., Sun, X., Sucher, N. J. & Pellecchia, M. Traditional Chinese medicines with caspase-inhibitory activity. Phytomedicine 13 (1–2), 16–22 (2006).
-
Chen, F. P. et al. Prescriptions of Chinese herbal medicines for insomnia in Taiwan during 2002. Evid. Based Complement. Alternat. Med. 2011, 236341 (2011).
-
Zuo, G. Y. et al. Screening of Chinese medicinal plants for Inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J. Ethnopharmacol. 120 (2), 287–290 (2008).
-
Tüzemen, N. Ü. et al. Synergistic antibacterial activity of ceftazidime-avibactam in combination with colistin, gentamicin, amikacin, and fosfomycin against carbapenem-resistant Klebsiella pneumoniae. Sci. Rep. 14 (1), 17567. https://doi.org/10.1038/s41598-024-67347-5 (2024).
-
Funk, B. et al. Efficacy and potential use of novel sustained release fillers as intracanal medicaments against Enterococcus faecalis biofilm in vitro. BMC Oral Health. 19 (1), 190 (2019).
-
Soltani, R., Khalili, H. & Shafiee, F. Double-disk synergy test for detection of synergistic effect between antibiotics against nosocomial strains of Staphylococcus aureus. J. Res. Pharm. Pract. 1 (1), 21–24 (2012).
-
Wu, D. et al. Purification and characterization of bacteriocin produced by a strain of Lacticaseibacillus rhamnosus ZFM216. Front. Microbiol. 13, 1050807 (2022).
-
Krishnan, S., Venkatachalam, P., Shanmugam, S. R. & Paramasivam, N. Fractional inhibitory concentration of bio-actives from agricultural waste disassembles biofilms and quenches virulence of nosocomial pathogens. J. Med. Microbiol. 74 (3), 001980 (2025).
-
Surana, A. et al. Comparative evaluation of minimal inhibitory concentration and minimal bactericidal concentration of various herbal irrigants against Enterococcus faecalis. J. Conserv. Dent. Endod. 27 (7), 780–784. https://doi.org/10.4103/JCDE.JCDE_349_23 (2024).
-
Yan, Y. et al. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiot. (Basel). 10 (3), 318 (2021).
-
Hallmann, L. Antibacterial polysaccharides in dental implantology. Mar. Drugs. 23 (8), 321. https://doi.org/10.3390/md23080321 (2025).
-
Mbeng Obame, R. B. et al. Targeted discovery of sesquiterpene Indole alkaloids from Greenwayodendron suaveolens. Phytochemistry 241, 114664. https://doi.org/10.1016/j.phytochem.2025.114664 (2026).
-
Ciriminna, R. et al. Pagliaro M. Citrus flavonoids as antimicrobials. Chem. Biodivers. 22 (6), e202403210. https://doi.org/10.1002/cbdv.202403210 (2025).
-
Moran, G. J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl. J. Med. 355 (7), 666–674. https://doi.org/10.1056/NEJMoa055356 (2006).
-
Guo, Y., Song, G., Sun, M., Wang, J. & Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 10, 107. https://doi.org/10.3389/fcimb.2020.00107 (2020).
-
CHINET. (ed China Antimicrobial Resistance Surveillance System). (2022).
-
Shariati, A. et al. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative Staphylococci strains: a systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 9 (9), 56. https://doi.org/10.1186/s13756-020-00714-9 (2020).
-
Daum, R. S. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N Engl. J. Med. 357 (4), 380–390. https://doi.org/10.1056/NEJMcp070747 (2007).
-
Babu Rajendran, N. et al. Mandatory surveillance and outbreaks reporting of the WHO priority pathogens for research & discovery of new antibiotics in European countries. Clin. Microbiol. Infect. 26 (7), 943.e1–943.e6 (2020).
-
Wang, J., Zhang, Z., Mei, X., Xu, Y. & Feng, Z. Research progress on antibacterial effect and mechanism of flavonoids. Jiangsu Agricultural Sci. 51 (1), 1–8 (2023).
-
Ren, X. et al. Natural flavone hispidulin protects mice from Staphylococcus aureus pneumonia by Inhibition of α-hemolysin production via targeting AgrAC. Microbiol. Res. 261, 127071. https://doi.org/10.1016/j.micres.2022.127071 (2022).
-
Wang, T., Zhang, P., Lv, H., Deng, X. & Wang, J. A. Natural dietary flavone myricetin as an α-hemolysin inhibitor for controlling Staphylococcus aureus infection. Front. Cell. Infect. Microbiol. 10, 330. https://doi.org/10.3389/fcimb.2020.00330 (2020).
-
Bian, N. et al. 7,8-Dihydroxyflavone attenuates the virulence of Staphylococcus aureus by inhibiting alpha-hemolysin. World J. Microbiol. Biotechnol. 38 (11), 200. https://doi.org/10.1007/s11274-022-03378-2 (2022).
-
Das, M. C. et al. Vitexin alters Staphylococcus aureus surface hydrophobicity to obstruct biofilm formation. Microbiol. Res. 263, 127126. https://doi.org/10.1016/j.micres.2022.127126 (2022).
-
Yang, W. et al. Study on bacteriostasis activity of total flavonoids from Gau/is polygoni multifori. Sci. Technol. Food Ind. 33 (9), 111–113 (2012).
-
Ishak, A., Mazonakis, N., Spernovasilis, N., Akinosoglou, K. & Tsioutis, C. Bactericidal versus bacteriostatic antibacterials: clinical significance, differences and synergistic potential in clinical practice. J. Antimicrob. Chemother. 80 (1), 1–17. https://doi.org/10.1093/jac/dkae380 (2025).
-
Sen, C. K., Roy, S., Mathew-Steiner, S. S. & Gordillo, G. M. Biofilm management in wound care. Plast. Reconstr. Surg. 148 (2), 275e–288e. https://doi.org/10.1097/PRS.0000000000008142 (2021).
-
Percival, S. L., McCarty, S. M. & Lipsky, B. Biofilms and wounds: an overview of the evidence. Adv. Wound Care (New Rochelle). 4 (7), 373–381. https://doi.org/10.1089/wound.2014.0557 (2015).
-
Percival, S. L., Vuotto, C., Donelli, G. & Lipsky, B. A. Biofilms and wounds: an identification algorithm and potential treatment options. Adv. Wound Care (New Rochelle). 4 (7), 389–397. https://doi.org/10.1089/wound.2014.0574 (2015).
-
Choi, M. et al. Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. Int. J. Biol. Macromol. 142, 680–692. https://doi.org/10.1016/j.ijbiomac.2019.10.009 (2020).
-
Hurlow, J. et al. Clinical biofilms: A challenging frontier in wound care. Adv. Wound Care (New Rochelle). 4 (5), 295–301. https://doi.org/10.1089/wound.2014.0567 (2015).
-
da Silva, P. M. et al. Napoleão TH. Punica granatum Sarcotesta lectin (PgTeL) impairs growth, structure, viability, aggregation, and biofilm formation ability of Staphylococcus aureus clinical isolates. Int. J. Biol. Macromol. 123, 600–608. https://doi.org/10.1016/j.ijbiomac.2018.11.030 (2019).
-
Idrees, M., Sawant, S., Karodia, N. & Rahman, A. Staphylococcus aureus biofilm: Morphology, Genetics, pathogenesis and treatment strategies. Int. J. Environ. Res. Public. Health. 18 (14), 7602. https://doi.org/10.3390/ijerph18147602 (2021).
