References
-
Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363 (20), 1938–1948 (2010).
-
Dawood, S. et al. Defining breast cancer prognosis based on molecular phenotypes: results from a large cohort study. Breast. Cancer Res. Treat. 126(1) 185 – 92. https://doi.org/10.1007/s10549-010-1113-7. (2011).
-
Pal, T. et al. A high frequency of BRCA mutations in young black women with breast cancer residing in Florida. Cancer https://doi.org/10.1002/cncr.29645. (2015).
-
Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121 (7), 2750–2767 (2011).
-
Garrido-Castro, A. C., Lin, N. U. & Polyak, K. Insights into molecular classifications, targeted therapies, and immunotherapy for triple-negative breast cancer. Cancer Discov. 9 (2), 176–198 (2019).
-
Tutt, A. N. J. et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2105215. (2021).
-
Kim, E. S. Molecular targets and therapies associated with poor prognosis of triple–negative breast cancer (Review). Int. J. Oncol. https://doi.org/10.3892/ijo.2025.5758. (2025).
-
Wedam, R. et al. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel). 15(7):1936. https://doi.org/10.3390/cancers15071936. (2023).
-
Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2 (12), 751–760 (2007).
-
Wang, Q. et al. Gene Expression Profiling for Diagnosis of Triple-Negative Breast Cancer: A Multicenter, Retrospective Cohort Study. Front Oncol. https://doi.org/10.3389/fonc.2019.00354. (2019).
-
Nguyen, S. M. et al. Chemotherapy-Induced Toxicities and Their Associations with Clinical and Non-Clinical Factors among Breast Cancer Patients in Vietnam. Curr. Oncol. 29(11) 8269–8284.https://doi.org/10.3390/curroncol29110653. (2022).
-
Hench, L. L. The story of Bioglass®. J. Mater. Science: Mater. Med. 17 (11), 967–978 (2006).
-
Wu, C. & Chang, J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Controlled Release. 160 (3), 539–548 (2012).
-
Hoppe, A., Güldal, N. S. & Boccaccini, A. R. A review of the biological response to ionic dissolution products from bioactive glasses. *Biomaterials* 32 (11), 2757–2774 (2011).
-
Cannio, M., Bellucci, D., Roether, J. A., Boccaccini, D. N. & Cannillo, V. Bioactive Glass Applications: A Literature Review of Human Clinical Trials. Materials (Basel). 14(18) 5440. https://doi.org/10.3390/ma14185440. (2021).
-
Mouriño, V., Cattalini, J. P. & Boccaccini, A. R. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J. R. Soc. Interface. 9 (68), 401–419 (2012).
-
Vichery, C. & Nedelec, J. M. Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications. Materials 9 (4), 288. https://doi.org/10.3390/ma9040288 (2016).
-
Borges, R. et al. Bioactive Glasses as Carriers of Cancer-Targeted Drugs: Challenges and Opportunities in Bone Cancer Treatment. Materials (Basel). 15(24):9082. https://doi.org/10.3390/ma15249082. (2022).
-
Drevet, R., Fauré, J. & Benhayoune, H. Electrophoretic deposition of bioactive glass coatings for bone implant applications: A review coatings 14, no. 9: 1084. https://doi.org/10.3390/coatings14091084 (2024).
-
Jones, J. R. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9(1) 4457-86. https://doi.org/10.1016/j.actbio.2012.08.023. (2013).
-
Szwed-Georgiou, A. et al. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater. Sci. Eng. 9(9) 5222–5254. https://doi.org/10.1021/acsbiomaterials.3c00609. (2023).
-
Fellenberg, J. et al. Bioactive glass selectively promotes cytotoxicity towards giant cell tumor of bone derived neoplastic stromal cells and induces MAPK signalling dependent autophagy. Bioact. Mater. (2022).
-
Deliormanlı, A. M., Rahman, B. & Atmaca, H. In vitro cytotoxicity of magnetic-fluorescent bioactive glasses on SaOS-2, MC3T3-E1, BJ fibroblast cells, their hemolytic activity, and sorafenib release behavior. Biomater. Adv. (2024).
-
Baino, F., Fiorilli, S. & Vitale-Brovarone, C. Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances. Acta Biomater. 42:18–32.https://doi.org/10.1016/j.actbio.2016.06.033. (2016).
-
Moeini, A., Chinijani, T. H. & Khachatourian, A. M. A critical review of bioactive glasses and glass–ceramics in cancer therapy. Int. J. Appl. Glass Sci. 14 (1), 69–87 (2023).
-
Hussein, L., Moaness, M., Mabrouk, M., Farahat, M. G. & Beherei, H. H. Advancements in mesoporous bioactive glasses for effective bone cancer therapy: Recent developments and future perspectives. Biomater Biosyst. https://doi.org/10.1016/j.bbiosy.2025.100108. (2025).
-
Ren, Z. et al. Bioactive Glasses: Advancing Skin Tissue Repair through Multifunctional Mechanisms and Innovations. Biomater. Res. https://doi.org/10.34133/bmr.0134. (2025).
-
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983).
-
El-Zahabi, H. S. A. et al. New thiobarbituric acid scaffold-based small molecules: Synthesis, cytotoxicity, 2D-QSAR, pharmacophore modelling and in-silico ADME screening. Eur. J. Pharm. Sci. (2019).
-
Abdelsalam, E. A. et al. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer. J. Enzyme Inhib. Med. Chem. 37 (1), 2265–2282. https://doi.org/10.1080/14756366.2022.2104841 (2022).
-
Tice, R. R. et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35, 206–221 (2000).
-
Langie, S. A., Azqueta, A. & Collins, A. R. The comet assay: past, present, and future. Front. Genet. 6, 266 (2015).
-
Siddiqui, M. A. et al. Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells. Toxicol. Vitro. 24, 1592–1598 (2010).
-
Zhang, Y. et al. Possible involvement of oxidative stress in potassium bromate-induced genotoxicity in human HepG2 cells. Chem. Biol. Interact. 189 (3), 186–191 (2011).
-
Singh, N. P. A simple method for accurate estimation of apoptotic cells. Exp. Cell Res. 256(1) 328 – 37. https://doi.org/10.1006/excr.2000.4810. (2000).
-
Guan, X. & Guan, Y. Artemisinin induces selective and potent anticancer effects in drug resistant breast cancer cells by inducing cellular apoptosis and autophagy and G2/M cell cycle arrest. J. BUON. 25 (3), 1330–1336 (2020).
-
Suzuki, K. et al. Drug- induced apoptosis and p53, BCL-2 and BAX expression in breast cancer tissues in vivo and in fibroblast cells in vitro. Jpn J. Clin. Oncol. 29 (7), 323–331 (1999).
-
Lai, C. Y. et al. Aciculatin induces p53-dependent apoptosis via mdm2 depletion in human cancer cells in vitro and in vivo. PLoS ONE. 7 (8), e42192 (2013).
-
Grzybowska-Szatkowska, L. & Ślaska, B. Mitochondrial NADH dehydrogenase polymorphisms are associated with breast cancer in Poland. J. Appl. Genet. 55, 173–181 (2014).
-
Obidiro, O., Battogtokh, G. & Akala, E. O. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 15(7) 1796. https://doi.org/10.3390/pharmaceutics15071796. (2023).
-
Chapdelaine, A. G. & Sun, G. Challenges and Opportunities in Developing Targeted Therapies for Triple Negative Breast Cancer. Biomolecules. https://doi.org/10.3390/biom13081207. (2023).
-
Morelli, M. B. et al. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection. Front. Cardiovasc. Med. (2022).
-
Wang, J. & Wu, S. G. Breast Cancer: An Overview of Current Therapeutic Strategies, Challenge, and Perspectives. Breast Cancer (Dove Med Press). (2023).
-
Newton, E. E., Mueller, L. E., Treadwell, S. M., Morris, C. A. & Machado, H. L. Molecular Targets of Triple-Negative Breast Cancer: Where Do We Stand? Cancers (Basel). 14(3):482. https://doi.org/10.3390/cancers14030482. (2022).
-
Chehelgerdi, M. et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol. Cancer. 22 (1), 169. https://doi.org/10.1186/s12943-023-01865-0 (2023).
-
Sabir, S., Thani, A. S. B. & Abbas, Q. Nanotechnology in cancer treatment: revolutionizing strategies against drug resistance. Front Bioeng. Biotechnol.https://doi.org/10.3389/fbioe.2025.1548588. (2025).
-
Pajares-Chamorro, N. & Chatzistavrou, X. Bioactive Glass Nanoparticles for Tissue Regeneration. ACS Omega. https://doi.org/10.1021/acsomega.0c00180. (2020).
-
Ali, H. M. et al. Reactive oxygen species induced oxidative damage to DNA, lipids, and proteins of antibiotic-resistant bacteria by plant-based silver nanoparticles. 3 Biotech. https://doi.org/10.1007/s13205-023-03835-1. (2023).
-
Mohamed, H. R. H. et al. Yttrium oxide nanoparticles ameliorates calcium hydroxide and calcium titanate nanoparticles induced genomic DNA and mitochondrial damage, ROS generation and inflammation. Sci. Rep. (2024)https://doi.org/10.1038/s41598-024-62877-4 (2024).
-
Mohamed, H. R. H. et al. Yttrium oxide nanoparticles induce selective cytotoxicity, genomic instability and ROS mitochondrial P53 mediated apoptosis in human pancreatic cancer cells. Sci Rep. https://doi.org/10.1038/s41598-025-05088-9. (2025).
-
Baracca, A., Sgarbi, G., Solaini, G. & Lenaz, G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim. Biophys. Acta https://doi.org/10.1016/s0005-2728(03)00110-5. (2023).
-
Zong, Y. et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct. Target. Ther. https://doi.org/10.1038/s41392-024-01839-8. (2024).
-
Adinew, G. M., Messeha, S. S., Taka, E., Badisa, R. B. & Soliman, K. F. A. Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells. Nutrients https://doi.org/10.3390/nu14224787. (2022).
-
Bel’skaya, L. V. & Dyachenko, E. I. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr. Issues Mol. Biol. https://doi.org/10.3390/cimb46050282. (2024).
-
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35 (4), 495–516 (2007).
-
Rose, R. et al. Chromatin compaction precedes apoptosis in developing neurons. Commun. Biol. 5 (1), 797. https://doi.org/10.1038/s42003-022-03704-2 (2022).
-
Fulda, S., Galluzzi, L. & Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discover.. 9 (6), 447–464. https://doi.org/10.1038/nrd3137 (2010).
-
Jan, R. & Chaudhry, G. E. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv. Pharm. Bull. https://doi.org/10.15171/apb.2019.024. (2019).
-
Mustafa, M. et al. Apoptosis: A comprehensive overview of signaling Pathways, morphological Changes, and physiological significance and therapeutic implications. Cells 13 (22), 1838. https://doi.org/10.3390/cells13221838 (2024).
-
Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discovery. 8 (7), 579–591. https://doi.org/10.1038/nrd2803 (2009).
-
Tamanna, S., Perumal, E. & Rajanathadurai, J. Enhanced Apoptotic Effects in MDA-MB-231 Triple-Negative Breast Cancer Cells Through a Synergistic Action of Luteolin and Paclitaxel. Cureus https://doi.org/10.7759/cureus.65159. (2024).
-
Guo, C., Sun, L., Chen, X. & Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural. Regen. Res. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009. (2013).
-
Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A. & D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). https://doi.org/10.18632/aging.100934. (2016).
-
Liu, S. et al. Oxidative Stress: Signaling Pathways, Biological Functions, and Disease. https://doi.org/10.1002/mco2.70268. (2025).
-
Mohamed, H. R. H. et al. Yttrium oxide nanoparticles induce selective cytotoxicity, genomic instability and ROS mitochondrial P53 mediated apoptosis in human pancreatic cancer cells. Sci Rep. https://doi.org/10.1038/s41598-025-05088-9. (2025).
-
Mohamed, H. R., Hemdan, S. H. A. & El-Sherif, A. A. Y2O3NPs induce selective cytotoxicity, genomic instability, oxidative stress and ROS mediated mitochondrial apoptosis in human epidermoid skin A-431 Cancer cells. Sci Rep. https://doi.org/10.1038/s41598-024-82376-w. (2025).
-
Mohamed, H. R. H. et al. Induction of potent Preferential cell death, severe DNA damage and p53-independent ROS-mediated mitochondrial apoptosis by CaTiO3NPs in HNO-97 tongue cancer cells. Naunyn Schmiedebergs Arch. Pharmacol.. 4 https://doi.org/10.1007/s00210-025-04323-4 (2025).
-
Pitolli, C. et al. p53-Mediated tumor suppression: DNA-Damage response and alternative mechanisms. Cancers (Basel). 11 (12), 1983. https://doi.org/10.3390/cancers11121983 (2019).
-
Hernández Borrero, L. J. & El-Deiry, W. S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer. 1876 (1), 188556. https://doi.org/10.1016/j.bbcan.2021.188556 (2021).
-
Qayoom, H. et al. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun. Signal. https://doi.org/10.1186/s12964-024-01863-9. (2024).
-
Wang, D. B., Kinoshita, C., Kinoshita, Y. & Morrison, R. S. p53 and mitochondrial function in neurons. Biochim. Biophys. Acta. https://doi.org/10.1016/j.bbadis.2013.12.015. (2014).
-
Chung, J. Y. & Knutson, B. A. Bypassing the guardian: regulated cell death pathways in p53-mutant cancers. Cell. Mol. Biol. Lett. https://doi.org/10.1186/s11658-025-00751-5. (2025).
-
Vogler, M. et al. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-025-02176-0. (2025).
-
Qian, S. et al. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. https://doi.org/10.3389/fonc.2022.985363. (2022).
-
Safwat, G., Soliman, E. S. M. & Mohamed, H. R. H. Induction of ROS mediated genomic instability, apoptosis and G0/G1 cell cycle arrest by erbium oxide nanoparticles in human hepatic Hep-G2 cancer cells. Sci. Rep. https://doi.org/10.1038/s41598-022-20830-3. (2022).
-
Mohamed, H. R. H. et al. Calcium titanate nanoparticles-induced cytotoxicity, genotoxicity and oxidative stress in human non-small lung cancer cells. Sci. Rep. https://doi.org/10.1038/s41598-025-89035-8 (2025).
-
Mohamed, H. R. H., Ibrahim, M. M. H. & Diab, A. Induction of oxidative DNA damage, cell cycle arrest and p53 mediated apoptosis by calcium titanate nanoparticles in MCF-7 breast cancer cells. Cancer Cell. Int. 22 (1), 355. https://doi.org/10.1186/s12935-022-02780-y (2022).
-
Liu, J. et al. Tanshinone IIA promotes apoptosis by downregulating BCL2 and upregulating TP53 in triple-negative breast cancer. Naunyn Schmiedebergs Arch. Pharmacol. 396 (2), 365–374. https://doi.org/10.1007/s00210-022-02316-1 (2023).
-
Xu, X., Pang, Y. & Fan, X. Mitochondria in oxidative stress, inflammation and aging: from mechanisms to therapeutic advances. Signal Transduct. Target. Ther. https://doi.org/10.1038/s41392-025-02253-4. (2025).
