Biochemical characterization of the α-1,3-mannosidase AnGH92A from Aspergillus nidulans

biochemical-characterization-of-the-α-1,3-mannosidase-angh92a-from-aspergillus-nidulans
Biochemical characterization of the α-1,3-mannosidase AnGH92A from Aspergillus nidulans

References

  1. Lesage, G. & Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317–343 (2006).

    Google Scholar 

  2. Gemmill, T. R. & Trimble, R. B. Overview of N– and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta 1426, 227–237 (1999).

    Google Scholar 

  3. Loibl, M. & Strahl, S. Protein O-mannosylation: what we have learned from baker’s yeast. Biochim. Biophys. Acta 1833, 2438–2446 (2013).

    Google Scholar 

  4. Abbott, D. W., Martens, E. C., Gilbert, H. J., Cuskin, F. & Lowe, E. C. Coevolution of yeast mannan digestion: convergence of the civilized human diet, distal gut microbiome, and host immunity. Gut Microbes 6, 334–339 (2015).

    Google Scholar 

  5. Orlean, P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192, 775–818 (2012).

    Google Scholar 

  6. Herscovics, A. & Orlean, P. Glycoprotein biosynthesis in yeast. FASEB J. 7, 540–550 (1993).

    Google Scholar 

  7. Ballou, C. Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv. Microb. Physiol. 14, 93–158 (1976).

    Google Scholar 

  8. Katafuchi, Y. et al. GfsA is a β1,5-galactofuranosyltransferase involved in the biosynthesis of the galactofuran side chain of fungal-type galactomannan in Aspergillus fumigatus. Glycobiology 27, 568–581 (2017).

    Google Scholar 

  9. Fontaine, T. & Latgé, J. P. Galactomannan produced by Aspergillus fumigatus: an update on the structure, biosynthesis and biological functions of an emblematic fungal biomarker. J. Fungi (Basel) 6, 283 (2020).

    Google Scholar 

  10. Latge, J. P. Galactofuranose containing molecules in Aspergillus fumigatus. Med. Mycol. 47(Supplement 1), S104–S109 (2009).

    Google Scholar 

  11. Kudoh, A., Okawa, Y. & Shibata, N. Significant structural change in both O– and N-linked carbohydrate moieties of the antigenic galactomannan from Aspergillus fumigatus grown under different culture conditions. Glycobiology 25, 74–87 (2015).

    Google Scholar 

  12. Latgé, J. P. Cell wall of Aspergillus fumigatus: variability and response to stress. Fungal Biol. 127, 1259–1266 (2023).

    Google Scholar 

  13. Kadooka, C., Tanaka, Y., Kishida, R., Hira, D. & Oka, T. Discovery of α-(1→6)-linked mannan structures resembling yeast N-glycan outer chains in Aspergillus fumigatus mycelium. mSphere 9, e0010024 (2024).

    Google Scholar 

  14. Oka, T., Hamaguchi, T., Sameshima, Y., Goto, M. & Furukawa, K. Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiol. (Reading) 150, 1973–1982 (2004).

    Google Scholar 

  15. Goto, M. et al. Protein O-mannosyltransferases B and C support hyphal development and differentiation in Aspergillus nidulans. Eukaryot. Cell 8, 1465–1474 (2009).

    Google Scholar 

  16. Hall, R. A. & Gow, N. A. R. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 90, 1147–1161 (2013).

    Google Scholar 

  17. Saijo, S. et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).

    Google Scholar 

  18. Vendele, I. et al. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLOS Pathog. 16, e1007927 (2020).

    Google Scholar 

  19. Kadooka, C. et al. Identification of galactofuranose antigens such as galactomannoproteins and fungal-type galactomannan from the yellow koji fungus (Aspergillus oryzae). Front. Microbiol. 14, 1110996 (2023).

    Google Scholar 

  20. Saijo, S. & Iwakura, Y. Dectin-1 and Dectin-2 in innate immunity against fungi. Int. Immunol. 23, 467–472 (2011).

    Google Scholar 

  21. Drula, E. et al. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 50, 571–577 (2022).

    Google Scholar 

  22. Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).

    Google Scholar 

  23. Hakki, Z. et al. Structural and kinetic dissection of the endo-α-1,2-mannanase activity of bacterial GH99 glycoside hydrolases from Bacteroides spp. Chem. – A Euro. J. 21, 1966–1977 (2015).

    Google Scholar 

  24. Solanki, V. et al. Glycoside hydrolase from the GH76 family indicates that marine Salegentibacter sp. Hel_I_6 consumes alpha-mannan from fungi. ISME J. 16, 1818–1830 (2022).

    Google Scholar 

  25. Maddi, A., Fu, C. & Free, S. J. The Neurospora crassa dfg5 and dcw1 genes encode α-1,6-mannanases that function in the incorporation of glycoproteins into the cell wall. PLOS One 7, e38872 (2012).

    Google Scholar 

  26. Kitagaki, H., Wu, H., Shimoi, H. & Ito, K. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol. Microbiol. 46, 1011–1022 (2002).

    Google Scholar 

  27. Kitagaki, H., Ito, K. & Shimoi, H. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. Eukaryot. Cell 3, 1297–1306 (2004).

    Google Scholar 

  28. Spreghini, E., Davis, D. A., Subaran, R., Kim, M. & Mitchell, A. P. Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot. Cell 2, 746–755 (2003).

    Google Scholar 

  29. Razmi, M. et al. Candida albicans mannosidases, Dfg5 and Dcw1, are required for cell wall integrity and pathogenesis. J. Fungi (Basel) 10, 525 (2025).

    Google Scholar 

  30. Zhu, Y. et al. Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat. Chem. Biol. 6, 125–132 (2010).

    Google Scholar 

  31. Thompson, A. J. et al. Bacteroides thetaiotaomicron generates diverse α-mannosidase activities through subtle evolution of a distal substrate-binding motif. Acta Crystallogr. D Struct. Biol. 74, 394–404 (2018).

    Google Scholar 

  32. Kołaczkowski, B. M. et al. Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis. Acta Crystallogr. D Struct. Biol. 79, 387–400 (2023).

    Google Scholar 

  33. Crouch, L. I. et al. Plant N-glycan breakdown by human gut Bacteroides. Proc. Natl Acad. Sci. U. S. A. 119 e2208168119 (2022).

  34. Crouch, L. I. N-glycan breakdown by bacterial CAZymes. Essays Biochem. 67, 373–385 (2023).

    Google Scholar 

  35. Kołaczkowski, B. M. et al. Analysis of fungal high-mannose structures using CAZymes. Glycobiology 32, 304–313 (2022).

    Google Scholar 

  36. Li, Y. et al. Enterococcus faecalis α1-2-mannosidase (EfMan-I): An efficient catalyst for glycoprotein N-glycan modification. FEBS Lett. 594, 439–451 (2020).

    Google Scholar 

  37. Alonso-Gil, S., Parkan, K., Kaminský, J., Pohl, R. & Miyazaki, T. Unlocking the hydrolytic mechanism of GH92 α-1,2-mannosidases: Computation inspires the use of C-glycosides as Michaelis complex mimics. Chemistry 28, e202200148 (2022).

    Google Scholar 

  38. Sagiroglugil, M. & Yasar, F. Catalytic reaction mechanism of bacterial GH92 α-1,2-mannosidase: A QM/MM metadynamics study. Chemphyschem 24, e202300628 (2023).

    Google Scholar 

  39. Shimizu, M. et al. Novel β-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J. Biol. Chem. 290, 27914–27927 (2015).

    Google Scholar 

  40. Sakai, K. et al. Biochemical characterization of thermostable β-1,4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae in Appl. Microbiol. Biotechnol. 101, 3237–3245 (2017).

    Google Scholar 

  41. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Google Scholar 

  42. Robb, M. et al. Molecular characterization of N-glycan degradation and transport in Streptococcus pneumoniae and its contribution to virulence. PLOS Pathog. 13, e1006090 (2017).

    Google Scholar 

  43. Schimpl, M., Borodkin, V. S., Gray, L. J. & van Aalten, D. M. F. Synergy of peptide and sugar in O-GlcNAcase substrate recognition. Chem. Biol. 19, 173–178 (2012).

    Google Scholar 

  44. Thomson, L. M., Fontaine, T., Mehlert, A. & Ferguson, M. A. J. Glycosylphosphatidylinositol anchors in chemical probes in biology: Science at the interface of chemistry biology and medicine. In Springer (ed. Schneider, M. P.) 227–233 (Netherlands, 2003).

    Google Scholar 

  45. de Vries, R. P. et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 18, 28 (2017).

    Google Scholar 

  46. Etxebeste, O., Garzia, A., Espeso, E. A. & Ugalde, U. Aspergillus nidulans asexual development: Making the most of cellular modules. Trends Microbiol. 18, 569–576 (2010).

    Google Scholar 

  47. Wieser, J., Lee, B. N., Fondon, J. W. 3rd. & Adams, T. H. Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr. Genet. 27, 62–69 (1994).

    Google Scholar 

  48. Lee, B. N. & Adams, T. H. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol. Microbiol. 14, 323–334 (1994).

    Google Scholar 

  49. van Munster, J. M. et al. Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ∆brlA and ∆flbA. PLOS One 10, e0116269 (2015).

    Google Scholar 

  50. Asbury, R. E. & Saville, B. A. Manno-oligosaccharides as a promising antimicrobial strategy: Pathogen inhibition and synergistic effects with antibiotics. Front. Microbiol. 16, 1529081 (2025).

    Google Scholar 

  51. Kazlauskaite, R. et al. Deploying an in vitro gut model to assay the impact of the mannan-oligosaccharide prebiotic bio-mos on the Atlantic salmon (Salmo salar) gut microbiome. Microbiol. Spectr. 10, e0195321 (2022).

    Google Scholar 

  52. Gupta, S. et al. The need for high-resolution gut microbiome characterization to design efficient strategies for sustainable aquaculture production. Commun. Biol. 7, 1391 (2024).

    Google Scholar 

Download references