Biodegradable lean Mg-Dy alloy enhances bone repair in senile osteoporotic fractures by modulating macrophage mediated immune microenvironment

biodegradable-lean-mg-dy-alloy-enhances-bone-repair-in-senile-osteoporotic-fractures-by-modulating-macrophage-mediated-immune-microenvironment
Biodegradable lean Mg-Dy alloy enhances bone repair in senile osteoporotic fractures by modulating macrophage mediated immune microenvironment

References

  1. Song, Q. et al. Risk factors for osteoporosis in the elderly and predictive value of age, body mass index, and visceral fat area. Nutr. Res Pract. 19, 375–385 (2025).

    Google Scholar 

  2. Compston, J. E., McClung, M. R. & Leslie, W. D. Osteoporosis. Lancet 393, 364–376 (2019).

    Google Scholar 

  3. Rachner, T. D., Khosla, S. & Hofbauer, L. C. Osteoporosis: now and the future. Lancet 377, 1276–1287 (2011).

    Google Scholar 

  4. Zheng, L. et al. Bone targeting antioxidative nano-iron oxide for treating postmenopausal osteoporosis. Bioact. Mater. 14, 250–261 (2022).

    Google Scholar 

  5. Tian, R.-C., Zhang, R.-Y. & Ma, C.-F. Rejuvenation of bone marrow mesenchymal stem cells: mechanisms and their application in senile osteoporosis treatment. Biomolecules 15, 276 (2025).

    Google Scholar 

  6. Pignolo, R. J., Law, S. F. & Chandra, A. Bone aging, cellular senescence, and osteoporosis. JBMR Plus 5, 10488 (2021).

    Google Scholar 

  7. Li, J. et al. Hydrogel delivery of DNase I and liposomal vancomycin to eradicate fracture-related methicillin-resistant staphylococcus aureus infection and support osteoporotic fracture healing. Acta Biomater. 164, 223–239 (2023).

    Google Scholar 

  8. Li, J. et al. Fracture-related infection in osteoporotic bone causes more severe infection and further delays healing. Bone Jt. Res. 11, 49–60 (2022).

    Google Scholar 

  9. Ren, L., Xu, X., Liu, H., Yang, K. & Qi, X. Biocompatibility and Cu ions release kinetics of copper-bearing titanium alloys. J. Mater. Sci. Technol. 95, 237–248 (2021).

    Google Scholar 

  10. Campbell, P. G. et al. PEEK versus titanium cages in lateral lumbar interbody fusion: a comparative analysis of subsidence. Neurosurg. Focus FOC 49, E10 (2020).

    Google Scholar 

  11. Zhang, Y., Fu, S., Yang, L., Qin, G. & Zhang, E. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity. J. Mater. Sci. Technol. 97, 201–212 (2022).

    Google Scholar 

  12. Lee, H. et al. 3D-printed tissue-specific nanospike-based adhesive materials for time-regulated synergistic tumor therapy and tissue regeneration in vivo. Adv. Funct. Mater. 34, 2406237 (2024).

    Google Scholar 

  13. Al-Tamimi, A. A., Quental, C., Folgado, J., Peach, C. & Bartolo, P. Stress analysis in a bone fracture fixed with topology-optimised plates. Biomech. Model. Mechanobiol. 19, 693–699 (2020).

    Google Scholar 

  14. Wu, Y. et al. Electrophoretic deposition of MXene coating on Mg alloy 2,5 PDCA-LDH film for enhanced anticorrosion/wear. Colloids Surf. A Physicochem. Eng. Asp. 702, 135043 (2024).

    Google Scholar 

  15. Ji, H. et al. Biodegradable Zn-2Cu-0.5Zr alloy promotes the bone repair of senile osteoporotic fractures via the immune-modulation of macrophages. Bioact. Mater. 38, 422–437 (2024).

    Google Scholar 

  16. Zheng, Y., Ruan, Z., Liu, S., Yang, X. & Chen, Z. Exosome-mediated macrophage polarization: pioneering pathways in diabetic wound healing. Int. Immunopharmacol. 161, 115058 (2025).

    Google Scholar 

  17. Ilesanmi-Oyelere, B. L. et al. Inflammatory markers and bone health in postmenopausal women: a cross-sectional overview. Immun. Ageing 16, 15 (2019).

    Google Scholar 

  18. Chen, H. et al. Evaluation on the corrosion resistance, antibacterial property and osteogenic activity of biodegradable Mg-Ca and Mg-Ca-Zn-Ag alloys. J. Magnes. Alloy. 10, 3380–3396 (2022).

    Google Scholar 

  19. K, S., S, B., Chatterjee, S. & N, R. Titanate incorporated anodized coating on magnesium alloy for corrosion protection, antibacterial responses and osteogenic enhancement. J. Magnes. Alloy. 10, 1109–1123 (2022).

    Google Scholar 

  20. Fang, H., Zhou, S., Qi, X., Wang, C. & Tian, Y. A multifunctional osteogenic system of ultrasonically spray deposited bone-active coatings on plasma-activated magnesium. J. Magnes. Alloy. 11, 2719–2739 (2023).

    Google Scholar 

  21. Feroz, S., Muhammad, N., Ratnayake, J. & Dias, G. Keratin-based materials for biomedical applications. Bioact. Mater. 5, 496–509 (2020).

    Google Scholar 

  22. Xie, J. et al. Developing new Mg alloy as potential bone repair material via constructing weak anode nano-lamellar structure. J. Magnes. Alloy. 11, 154–175 (2023).

    Google Scholar 

  23. Sui, B., Lu, H., Liu, X. & Sun, J. High-purity Mg and Mg-1Ca alloys: comparative assessment of the merits regarding degradation, osteogenesis, and biosafety for orthopedic applications. J. Mater. Sci. Technol. 140, 58–66 (2023).

    Google Scholar 

  24. Jeon, H. et al. Preparation of a nanocellulose/nanochitin coating on a poly (lactic acid) film for improved hydrolysis resistance. Int. J. Biol. Macromol. 254, 127790 (2024).

    Google Scholar 

  25. Tang, H. et al. In vitro and in vivo evaluation of micro-alloyed magnesium for potential application in alveolar bone fixation screws. J. Mater. Sci. Technol. 144, 62–69 (2023).

    Google Scholar 

  26. Mueller, W.-D., Lucia Nascimento, M. & Lorenzo de Mele, M. F. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater. 6, 1749–1755 (2010).

    Google Scholar 

  27. Sun, Y. et al. Degradation particles derived from high-purity magnesium inhibit osteogenic differentiation through regulation of macrophage polarization. J. Mater. Sci. Technol. 139, 113–119 (2023).

    Google Scholar 

  28. Hashemi, M., Alizadeh, R. & Langdon, T. G. Recent advances using equal-channel angular pressing to improve the properties of biodegradable Mg‒Zn alloys. J. Magnes. Alloy. 11, 2260–2284 (2023).

    Google Scholar 

  29. Niranjan, C. A. et al. Magnesium alloys as extremely promising alternatives for temporary orthopedic implants—a review. J. Magnes. Alloy. 11, 2688–2718 (2023).

    Google Scholar 

  30. Pan, C. et al. Bivalirudin functionalized hydrogel coating capable of catalytical NO-generation for enhanced anticorrosion and biocompatibility of magnesium alloy. Mater. Today Bio 31, 101473 (2025).

    Google Scholar 

  31. Park, S.-S. et al. In-vivo bone remodeling potential of Sr-d-Ca-P /PLLA-HAp coated biodegradable ZK60 alloy bone plate. Mater. Today Bio 18, 100533 (2023).

    Google Scholar 

  32. Germaini, M.-M. et al. Additive manufacturing of biomaterials for bone tissue engineering—a critical review of the state of the art and new concepts. Prog. Mater. Sci. 130, 100963 (2022).

    Google Scholar 

  33. Chen, T. et al. Coupling physics in machine learning to investigate the solution behavior of binary Mg alloys. J. Magnes. Alloy. 10, 2817–2832 (2022).

    Google Scholar 

  34. Liu, C. et al. Annealing hardening effect aroused by solute segregation in gradient ultrafine-grained Mg-Gd-Zr alloy. J. Mater. Sci. Technol. 144, 70–80 (2023).

    Google Scholar 

  35. Feng, Z. et al. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater. 164, 1–14 (2023).

    Google Scholar 

  36. Wolff, M. et al. Comparison between compression tested and simulated Mg-6.3Gd bone scaffolds produced by binder based additive manufacturing technique. J. Magnes. Alloy. 11, 2750–2762 (2023).

    Google Scholar 

  37. Huang, Y. et al. Development and prospects of degradable magnesium alloys for structural and functional applications in the fields of environment and energy. J. Magnes. Alloy. 11, 3926–3947 (2023).

    Google Scholar 

  38. Yao, Y. et al. Effect of mechanical stresses on degradation behavior of high-purity magnesium in bone environments. J. Mater. Sci. Technol. 171, 252–261 (2024).

    Google Scholar 

  39. Sefa, S. et al. Multiscale morphological analysis of bone microarchitecture around Mg-10Gd implants. Bioact. Mater. 30, 154–168 (2023).

    Google Scholar 

  40. Liu, G. et al. Effects of inorganic ions, organic particles, blood cells, and cyclic loading on in vitro corrosion of MgAl alloys. J. Magnes. Alloy. 11, 2429–2441 (2023).

    Google Scholar 

  41. Wang, Y. et al. Corrosion behavior and mechanical property of Mg-4Li-1Ca alloys under micro-compressive stress. J. Mater. Sci. Technol. 175, 170–184 (2024).

    Google Scholar 

  42. Qi, G. et al. SrHPO4-coated Mg alloy implant attenuates postoperative pain by suppressing osteoclast-induced sensory innervation in osteoporotic fractures. Mater. Today Bio 28, 101227 (2024).

    Google Scholar 

  43. Wu, Y. et al. Influence of electrolyte temperature on morphology and properties of composite anodic film on titanium alloy Ti-10V-2Fe-3Al. Coatings 10, 1109 (2020).

    Google Scholar 

  44. Song, G. & Atrens, A. Recent insights into the mechanism of magnesium corrosion and research suggestions. Adv. Eng. Mater. 9, 177–183 (2007).

    Google Scholar 

  45. Ci, W. et al. Achieving ultra-high corrosion-resistant Mg-Zn-Sc alloys by forming Sc-assisted protective corrosion product film. J. Mater. Sci. Technol. 181, 138–151 (2024).

    Google Scholar 

  46. Kiani, F. et al. Microstructures, mechanical properties, corrosion, and biocompatibility of extruded Mg-Zr-Sr-Ho alloys for biodegradable implant applications. J. Magnes. Alloy. 11, 110–136 (2023).

    Google Scholar 

  47. Sun, Y., Helmholz, H. & Willumeit-Römer, R. Peri-implant gas accumulation in response to magnesium-based musculoskeletal biomaterials: reframing current evidence for preclinical research and clinical evaluation. J. Magnes. Alloy. 12, 59–71 (2024).

    Google Scholar 

  48. Yang, L. et al. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg–Dy alloys. J. Mech. Behav. Biomed. Mater. 13, 36–44 (2012).

    Google Scholar 

  49. Yang, L. et al. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium. Mater. Sci. Eng. C 75, 1351–1358 (2017).

    Google Scholar 

  50. Yang, L. et al. Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Mater. Sci. Eng. B 176, 1827–1834 (2011).

    Google Scholar 

  51. Kiani, F., Lin, J., Munir, K., Wen, C. & Li, Y. Improvements in mechanical, corrosion, and biocompatibility properties of Mg–Zr–Sr–Dy alloys via extrusion for biodegradable implant applications. J. Magnes. Alloy. 11, 3840–3865 (2023).

    Google Scholar 

  52. Bi, G. et al. Microstructure and mechanical properties of an extruded Mg-Dy-Ni alloy. Mater. Sci. Eng. A 760, 246–257 (2019).

    Google Scholar 

  53. Li, D. et al. In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis. Acta Biomater. 141, 454–465 (2022).

    Google Scholar 

  54. Chen, J. S. et al. Formation mechanism of W phase and its effects on the mechanical properties of Mg−Dy−Zn alloys. J. Magnes. Alloy. 13, 2174–2189 (2025).

    Google Scholar 

  55. Munir, K., Lin, J., Wen, C., Wright, P. F. A. & Li, Y. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta Biomater. 102, 493–507 (2020).

    Google Scholar 

  56. Kiani, F., Wen, C. & Li, Y. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—a review. Acta Biomater. 103, 1–23 (2020).

    Google Scholar 

  57. Shi, H. et al. Microstructural evolution of Mg–14Gd–0.4Zr alloy during compressive creep. J. Magnes. Alloy. 11, 3161–3173 (2023).

    Google Scholar 

  58. Guo, T., Siska, F. & Barnett, M. R. Distinguishing between slip and twinning events during nanoindentation of magnesium alloy AZ31. Scr. Mater. 110, 10–13 (2016).

    Google Scholar 

  59. Guo, T., Siska, F., Cheng, J. & Barnett, M. Initiation of basal slip and tensile twinning in magnesium alloys during nanoindentation. J. Alloy. Compd. 731, 620–630 (2018).

    Google Scholar 

  60. Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256–262 (2021).

    Google Scholar 

  61. Pajarinen, J. et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196, 80–89 (2019).

    Google Scholar 

  62. Chen, X. et al. Enhancing the mechanical properties and osteogenic differentiation of Mg-1 wt.%Ho alloy by tailoring microstructures through extrusion temperatures. J. Mater. Res. Technol. 30, 6941–6952 (2024).

    Google Scholar 

  63. Wang, W. et al. High-performance Mg–Zn alloy achieved by the ultrafine grain and nanoparticle design. Bioact. Mater. 41, 371–384 (2024).

    Google Scholar 

  64. Zhang, Z. et al. In vitro and in vivo evaluation of osteogenesis and antibacterial activity of MgGa alloys. Acta Biomater. 185, 85–97 (2024).

    Google Scholar 

  65. Liu, J. et al. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Acta Biomater. 102, 508–528 (2020).

    Google Scholar 

  66. Ding, Y., Lin, J., Wen, C., Zhang, D. & Li, Y. Mechanical properties, corrosion, and biocompatibility of Mg-Zr-Sr-Dy alloys for biodegradable implant applications. J. Biomed. Mater. Res. B. Appl. Biomater. 106, 2425–2434 (2018).

    Google Scholar 

  67. Feyerabend, F. et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 6, 1834–1842 (2010).

    Google Scholar 

  68. Gao, J., Feng, L., Chen, B., Fu, B. & Zhu, M. The role of rare earth elements in bone tissue engineering scaffolds—a review. Compos. Part B Eng. 235, 109758 (2022).

    Google Scholar 

  69. Guo, A. et al. A β-Si3N4/HA composite materials with biomimetic mineralized CaCO3 coating promote angiogenesis and bone regeneration through immunomodulation. Biomater. Adv. 181, 214629 (2026).

    Google Scholar 

  70. Lou, P. et al. Single-cell sequencing reveals a senescent immune landscape in bone marrow lesions inducing articular cartilage damage in osteoarthritis. Bone Res. 13, 94 (2025).

    Google Scholar 

  71. Jiménez-Ortega, R. F. et al. Impact of the dietary antioxidant index on bone mineral density gain among mexican adults: a prospective study. Arch. Osteoporos. 20, 38 (2025).

    Google Scholar 

  72. Li, N. & Guo, X. The gut microbiota and host immunity synergistically orchestrate colonization resistance. Gut Microbes 18, 2611545 (2026).

    Google Scholar 

  73. Durairajan, S. S. K. et al. Molecular links between inflammatory bowel disease and Alzheimer’s disease through immune signaling and inflammatory pathways. World J. Gastroenterol. 31, 111301 (2025).

    Google Scholar 

  74. Zhang, X. et al. Negatively correlated corrosion and stress corrosion cracking of Mg-Al-Mn-Ca based alloys. Corros. Sci. 227, 111747 (2024).

    Google Scholar 

Download references