Biodegradation and detoxification of malachite green dye by crude manganese peroxidase produced by Pseudomonas aeruginosa MF14446.1 and Enterobacter roggenkampii CP033800.1

biodegradation-and-detoxification-of-malachite-green-dye-by-crude-manganese-peroxidase-produced-by-pseudomonas-aeruginosa-mf144461-and-enterobacter-roggenkampii-cp033800.1
Biodegradation and detoxification of malachite green dye by crude manganese peroxidase produced by Pseudomonas aeruginosa MF14446.1 and Enterobacter roggenkampii CP033800.1

References

  1. Kishor, R. et al. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 9, 105012 (2021).

    Google Scholar 

  2. Fobiri, G. K. Synthetic dye application in textiles: A review on the efficacies and toxicities involved. Text. Leather Rev. 3(1), 29–42 (2022).

    Google Scholar 

  3. Zafar, S., Bukhari, D. A. & Rehman, A. Azo dyes degradation by microorganisms–An efficient and sustainable approach. Saudi J. Biol. Sci. 29, 103437 (2022).

    Google Scholar 

  4. Rai, H. S. et al. Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit. Rev. Environ. Sci. Technol. 35, 219–238 (2005).

    Google Scholar 

  5. Kumaravel, R. & Shanmugam, V. K. Biomimetic and ecological perspective towards decolorization of industrial important Azo dyes using bacterial cultures–A review. Sustainable Chem. Environ. 7, 100130 (2024).

    Google Scholar 

  6. Ben Mansour, H. et al. Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation. Environ. Sci. Pollut. Res. 19, 2634–2643 (2012).

    Google Scholar 

  7. Singha, K., Pandit, P., Maity, S. & Sharma, S. R. Harmful environmental effects for textile chemical dyeing practice. In Green chemistry for sustainable textiles; Elsevier: ; pp. 153–164. (2021).

  8. Tkaczyk, A., Mitrowska, K. & Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 717, 137222 (2020).

    Google Scholar 

  9. Sun, Y. & Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002).

    Google Scholar 

  10. Pérez, J., Muñoz-Dorado, J., De la Rubia, T. & Martinez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5, 53–63 (2002).

    Google Scholar 

  11. Chowdhary, P., Shukla, G., Raj, G., Ferreira, L. F. R. & Bharagava, R. N. Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN Appl. Sci. 1, 45 (2019).

    Google Scholar 

  12. Kumar, A. & Chandra, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6. (2020).

  13. Falade, A. O., Eyisi, O. A., Mabinya, L. V., Nwodo, U. U. & Okoh, A. I. Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and ensifer adhaerens. Biotechnol. Rep. 16, 12–17 (2017).

    Google Scholar 

  14. Dube, S. L., Osunsanmi, F. O., Ikhane, A. O., Mosa, R. A. & Opoku, A. R. Biodegradation and detoxification of some dyes by crude lignin peroxidase complex produced by Escherichia coli accession no: LR0250096. 1 and Pseudomonas aeruginosa accession no: CP031449. 2. Appl. Sci. 14, 8012 (2024).

    Google Scholar 

  15. Wong, D. W. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 157, 174–209 (2009).

    Google Scholar 

  16. Nayanashree, G. & Thippeswamy, B. Natural rubber degradation by laccase and manganese peroxidase enzymes of penicillium chrysogenum. Int. J. Environ. Sci. Technol. 12, 2665–2672 (2015).

    Google Scholar 

  17. Glenn, J. K. & Gold, M. H. Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete, phanerochaete Chrysosporium. Arch. Biochem. Biophys. 242, 329–341 (1985).

    Google Scholar 

  18. Deguchi, T., Matsubara, M. & Nishida, T. N. A. D. H. Oxidation by manganese peroxidase with or without α-Hydroxy acid. Biosci. Biotechnol. Biochem. 66, 717–721 (2002).

    Google Scholar 

  19. Vitolo, M. Brief review on enzyme activity. World J. Pharm. Res. 9, 60–76 (2020).

    Google Scholar 

  20. Ali, L. et al. Soybean peroxidase-mediated degradation of an Azo dye–a detailed mechanistic study. BMC Biochem. 14, 35 (2013).

    Google Scholar 

  21. Nour El-Dein, M. M., Shereif, A. E. A., Mansour, F. A., Abou-Dobara, M. I. & Ball, A. S. Optimization of xylanase and peroxidase production from Streptomyces sp. K37. J. BioSci. Biotechnol. 5, 180–198 (2014).

    Google Scholar 

  22. Asses, N., Ayed, L., Hkiri, N. & Hamdi, M. Congo red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway. BioMed research international 2018, 3049686. (2018).

  23. Chen, Y., Wang, X., Fu, X. & Li, Y. Photocatalytic degradation process of Azo dye congo red in aqueous solution. Chin. J. Catal. 26, 37–42 (2005).

    Google Scholar 

  24. Yao, J., Jia, R., Zheng, L. & Wang, B. Rapid decolorization of Azo dyes by crude manganese peroxidase from schizophyllum sp. F17 in solid-state fermentation. Biotechnol. Bioprocess Eng. 18, 868–877 (2013).

    Google Scholar 

  25. Yang, X., Zheng, J., Lu, Y. & Jia, R. Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. Environ. Sci. Pollut. Res. 23, 9585–9597 (2016).

    Google Scholar 

  26. Khlystov, N. A., Yoshikuni, Y., Deutsch, S. & Sattely, E. S. A plant host, Nicotiana benthamiana, enables the production and study of fungal lignin-degrading enzymes. Commun. Biology. 4, 1027 (2021).

    Google Scholar 

  27. Kalyani, D. C., Phugare, S. S., Shedbalkar, U. U. & Jadhav, J. P. Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolorization. Ann. Microbiol. 61, 483–491 (2011).

    Google Scholar 

  28. Noman, E., Talip, B. A., Al-Gheethi, A., Mohamed, R. & Nagao, H. Decolourisation of dyes in Greywater by mycoremediation and mycosorption process of fungi from peatland; primary study. Mater. Today: Proc. 31, 23–30 (2020).

    Google Scholar 

  29. Elnagar, K. E., El-Meged, H. A. & Abdel-Razik, A. M. Method validation of quantitative FTIR as rapid and green analytical technique for dyes. J. Meas. Sci. Appl. (JMSA). 3, 54–63 (2023).

    Google Scholar 

  30. Rahman, N. H. A., Rahman, N. A., Aziz, S. A. & Hassan, M. A. Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils. Bioresources 8, 6136–6150 (2013).

    Google Scholar 

  31. Hatakka, A. Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol. Rev. 13, 125–135 (1994).

    Google Scholar 

  32. Taylor, C. R. et al. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J. Appl. Microbiol. 113, 521–530 (2012).

    Google Scholar 

  33. Paszczyński, A., Huynh, V. B. & Crawford, R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus phanerochaete Chrysosporium. Arch. Biochem. Biophys. 244, 750–765 (1986).

    Google Scholar 

  34. Glenn, J. K., Akileswaran, L. & Gold, M. H. Mn (II) oxidation is the principal function of the extracellular Mn-peroxidase from phanerochaete Chrysosporium. Arch. Biochem. Biophys. 251, 688–696 (1986).

    Google Scholar 

  35. Mm, B. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Google Scholar 

Download references