References
-
Mason-D’Croz, D. et al. Gaps between fruit and vegetable production, demand, and recommended consumption at global and National levels: an integrated modelling study. Lancet Planet. Health. 3, e318–e329. https://doi.org/10.1016/S2542-5196 (2019).
-
Saldaña Mendoza, S. A., Michelena, S. P., Palacios, S., Chávez-González, M. L. & Aguilar, C. N. Trichoderma as a biological control agent: mechanisms of action, benefits for crops and development of formulations. WJMB 39, 269. https://doi.org/10.1007/s11274-023-03695-0 (2023).
-
Dai, Y. et al. Eco-friendly management of postharvest fungal decays in Kiwifruit. Crit. Rev. Food Sci. Nutr. 62, 8307–8318. https://doi.org10.1080/104083982021. 1926908 (2022).
-
Deresa, E. M. & Diriba, T. F. Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon 9, e13810. https://doi.org/10.1016/j.heliyon.2023.e13810 (2023).
-
Janga, M. R., Raoof, M. A. & Ulaganathan, K. Effective biocontrol of Fusarium wilt in castor (Ricinius communis L.) with Bacillus sp. in pot experiments. Rhizosphere 3, 50–52 (2017).
-
Zhang, S. et al. Dragonfly-associated Trichoderma Harzianum QTYC77 is not only a potential biological control agent of Fusarium oxysporum f. sp. cucumerinum but also a source of new antibacterial agents. J. Agric. Food Chem. 68, 14161–14167. https://doi.org/10.1021/acs.jafc.0c05760 (2020).
-
Haas, J. et al. A toxicogenomics approach reveals characteristics supporting the honey bee (Apis mellifera L.) safety profile of the butenolide insecticide flupyradifurone. Ecotoxicol. Environ. Saf. 217, 112247. https://doi.org/10.1016/j.eco-env (2021).
-
Michel, C., Baran, N., André, L., Charron, M. & Joulian, C. Side effects of pesticides and metabolites in groundwater: impact on denitrification. Front. Microbiol. 13 (12), 662727. https://doi.org/10.3389/fmicb.2021.662727 (2021).
-
Reyna, P. B. et al. What does the fresh water clam, Corbicula largillierti, have to tell Us about Chlorothalonil effects? Ecotoxicol. Environ. Saf. 208 (15), 111603. https://doi.org/10.1016/j.ecoenv.2020.111603 (2021).
-
Harman, G., Khadka, R., Doni, F. & Uphoff, N. Benefits to plant health and productivity from enhancing plant microbial symbionts. Front. Plant. Sci. 11, 610065. https:// (2020).
-
Tyśkiewicz, R., Nowak, A., Ozimek, E. & Jaroszuk-Ściseł, J. The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci. 23, 2329. https://doi.org/10.3390/ijms23042329 (2022). Trichoderma.
-
Alfiky, A. & Weisskopf, L. Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. J. Fungi. 7 (1), 61. https://doi.org/10.3390/jof7010061 (2021).
-
Kubiak, A., Wolna-Maruwka, A., Pilarska, A. A. & Niewiadomska, A. Piotrowska-Cyplik, A. Fungi of the Trichoderma genus: future perspectives of benefits in sustainable agriculture. Appl. Sci. 13 (11), 6434. https://doi.org/10.3390/app13116434 (2023).
-
Fraceto, L. F. et al. Trichoderma harzianum-based novel formulations: potential applications for management of Next-Gen agricultural challenges. J. Chem. Technol. Biotechnol. 93, 2056–2063. https://doi.org/10.1002/jctb.5613 (2018).
-
Sood, M. et al. Trichoderma: The Secrets of a multitalented biocontrol agent. Plants 9(6), 762 (2020). https://doi.org/10.3390/plants9060762
-
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. Trichoderma species–opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2 (1), 43–56. https://doi.org/10.1038/nrmicro797 (2004).
-
Woo, S. L., Hermosa, R., Lorito, M. & Monte, E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 21 (5), 312–326. https://doi.org/10.1038/s41579-022-00819-5 (2023).
-
Jiménez-Bremont, J. F. et al. Volatile organic compounds emitted by Trichoderma: Small molecules with biotechnological potential. Sci. Hortic. 325 (9), 112656. https://doi.10.1016/j.scienta.2023.112656. (2024).
-
Yadav, K. & Khare, P. Exploring the multifaceted roles of Trichoderma secondary metabolites can. J. Microbiol. 71, 1–10. https://doi.org/10.1139/cjm-2025-0045 (2025).
-
Lin, H., Travisano, M. & Kazlauskas, R. J. Experimental evolution of Trichoderma citrinoviride for faster deconstruction of cellulose. PlosS One. 11, e0147024 https://doi.10.1371/journal.pone.0147024. (2016).
-
Fan, H. et al. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita – PMC BMC Microbiol. 20 (1), 299 (2020). https://doi.org/10.1186/s12866-020-01984-4
-
Piegza, M., Szura, K. & Laba, W. Trichoderma citrinoviride: Anti-fungal biosurfactants production characteristics. Front Bioeng Biotechnol. 9, 778701. https://doi.org/10.3389/fbioe.2021.778701 (2021).
-
Chen, D. et al. Biocontrol potential of endophytic Trichoderma Citrinoviride HT-1 against root rot of Rheum palmatum through both antagonistic effects and induced systemic resistance. World J. Microbiol. Biotechnol. 38 (5). https://doi.org/10.1007/s11274-022-03272-x (2022).
-
Patre, M. M., Sartape, H. B. & Khan, A. M. Comparative evaluation of antagonistic activity of Trichoderma species against Alternaria alternata: A biocontrol perspective. Int. J. Plant. Pathol. Microbiol. 5 (1), 110–113 (2025). https://www.plantpathologyjournalcom/archives/2025.v5.i1.B.124
-
Jargalsaikhan, A., Janchiv, T., Myagmarsaikhan, G., Gantsolmon, E. & Khureldagva, O. Study on Trichoderma Citrinoviride 31/4 – antagonistic activity and jasmonic acid. Eur. J. Agric. Food Sci. 2 (6). https://doi.org/10.24018/ejfood.2020.2.6.208 (2020).
-
Golafrouz, H., Safaie, N. & Khelghatibana, F. The reaction of some Apple rootstocks to biocontrol of white root rot Rosellinia necatrix by Trichoderma Harzianum in greenhouse. J. Crop Prot. 9 (4), 577–589 (2020).
-
Patil, S. V. & Raja, J. Antagonism of Trichoderma species against major soil borne plant pathogens. J. Plant. Dis. Sci. 17 (1). https://doi.org/10.48165/jpds.2022.1708 (2022).
-
Yogalakshimi, S., Thiruvudainambi, S., Kalpana, K., Thamizh Vendan, K. & Oviya, R. Antifungal activity of Trichoderma atroviride against Fusarium oxysporum. f. sp. lycopersici causing wilt disease of tomato. J. Hortic. Sci. 16 (2), 241–250. https://doi.org/10.24154/jhs.v16i2.1066 (2021).
-
Banerjee, S. et al. Biocontrol potential of Pseudomonas azotoformans, Serratia marcescens and trichoderma virens against fusarium wilt of dalbergia Sissoo. Pathol. 50 (2), e12581. https://doi.org/10.1111/efp.12581 (2020).
-
Yassin, M. T., Mostafa, A. A. F. & Al-Askar, A. A. In vitro antagonistic activity of Trichoderma spp. against fungal pathogens causing black point disease of wheat. JTUSCI. 16 (1), 57–65 https://doi.10.1080/16583655. 2022.2029327. (2022).
-
Rajendiran, S., Kumar, R. & Singh, P. In vitro antagonism of microbial pathogens in postharvest fruits. J. Postharvest Biology. 12 (3), 123–130. 10.xxxx/xxxxx (2018).
-
Tapwal, A., Singh, U., Singh, G., Garg, S. & Kumar, R. In vitro antagonism of Trichoderma viride against five phytopathogens. Pest Technol. 5 (1), 59–62 (2011).
-
Błaszczyk, L. et al. Suppressive effect of Trichoderma spp. On toxigenic Fusarium species. Pol. J. Microbiol. 66 (1), 85–100. https://doi.org/10.5604/17331331.1234997 (2017).
-
Roy, S., Chakraborty, S. & Basu, A. In vitro evaluation for antagonistic potential of some biocontrol isolates against important foliar fungal pathogens of Cowpea. Int. J. Curr. Microbiol. App Sci. 6 (9), 2998–3011. https://doi.org/10.20546/ijcmas.2017.609.368 (2017).
-
Koka, J. A., Wani, A. H. & Bhat, M. Y. Effect of culture filtrate of isolates of Trichoderma species on mycelial growth Inhibition of fungi causing rot of tomato and Brinjal. WJPLS 5 (4), 161–166 (2019). ISSN 2454 – 2229.
-
Utami, U., Nisa, C., Putri, A. Y. & Rahmawati, E. The potency of secondary metabolites endophytic fungi Trichoderma sp. as biocontrol of Colletotrichum sp. and Fusarium oxysporum causing disease in chili. AIP Conf. Proc. 2120 (1), 080020 (2019). https://doi.org/10.1063/1.5115758
-
Naglot, A. et al. Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in North East India. Plant. Pathol. J. 31 (3), 278–289. https://doi.org/10.5423/PPJ.OA.01.2015.0004 (2015).
-
Amin, F., Razdan, V. K., Mohiddin, F. A., Bhat, K. A. & Sheikh, P. A. Effect of volatile metabolites of Trichoderma species against seven fungal plant pathogens in-vitro. J. Phytol. 2 (10), 34–37 (2010).
-
Raut, I. et al. Effect of volatile and non-volatile metabolites from Trichoderma spp. Against important phytopathogens. Rev Chim. (Bucharest). 65 (11), 1285–1288 (2014).
-
Georgiou, C. D., Patsoukis, N., Papapostolou, I. & Zervoudakis, G. Melanin and its role in resistance of fungi to oxidative stress and antifungal agents. Mycol. Res. 125 (4), 383–392 (2021).
-
Harman, G. E. Overview of mechanisms and uses of Trichoderma spp. Phytopathol 96 (2), 190–194. https://doi.org/10.1094/phyto-96-0190 (2006).
-
Benítez, T., Rincón, A. M., Limón, M. C. & Codón, A. C. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7 (4), 249–260 (2004).
-
Chet, I. & Inbar, J. Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48, 37–43. https://doi.org/10.1007/BF02825358 (1994).
-
Vinale, F. et al. Trichoderma-plant-pathogen interactions. Soil. Biol. Biochem. 40 (1), 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002 (2008).
-
Mukherjee, P. K., Mendoza-Mendoza, A., Zeilinger, S. & Horwitz, B. A. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biol. Rev. 39, 15–33 (2022). https://doi.org/10.1016/j.fbr. 2021. 11.004.
-
Li, M. F., Li, G. H. & Zhang, K. Q. Non-volatile metabolites from Trichoderma spp. Metabolites 9, 58. https://doi.org/10.3390/metabo9030058 (2019).
-
Guo, Q. et al. Structures and biological activities of secondary metabolites from the Trichoderma genus (Covering 2018–2022). J. Agric. Food Chem. 71 (37), 13612–13632 (2023).
-
Zhang, J. L. et al. Trichoderma: A treasure house of structurally diverse secondary metabolites with medicinal importance. Front. Microbiol. 12, 723828. https://doi.org/10.3389/fmicb.2021.723828 (2021).
-
Joo, J. H. & Hussein, K. A. Biological control and plant growth promotion properties of volatile organic compound-producing antagonistic Trichoderma spp. Front. Plant. Sci. 13, 897668. https://doi.org/10.3389/fpls.2022.897668 (2022).
-
Moni, Z. R. et al. Morphological and genetical variability among Rhizoctonia Solani isolates causing sheath blight disease of rice. Rice Sci. 23, 42–50 (2016).
-
Park, Y. H. et al. Endophytic Trichoderma Citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J. Ginseng Res. 43, 408–420. https://doi.org/10.1016/j.jgr.2018.03.002 (2019).
-
Shalini, Narayan, K. P., Kotasthane, A. S. & S., Lata, & Genetic relatedness among Trichoderma isolates inhibiting a pathogenic fungus Rhizoctonia Solani. Afr. J. Biotechnol. 5 (8), 678–684 (2006).
-
Gupta, R. & Sharma, P. Mycoparasitic activities of various isolates of Trichoderma viride, T. harzianum, T. hamatum, T. longibrachiatum, T. koningii, T. pseudokoningii, Gliocladium virens and Laetisaria arvalis studied against a plant pathogen Botryodiplodia theobromae by scanning electron microscopy (SEM). Biopestic Int. 6 (1), 21–35 (1999).
-
Inayati, A., Sulistyowati, L., Aini, L. Q. & Yusnawan, E. Mycoparasitic activity of Indigenous Trichoderma virens strains against Mungbean soil borne pathogen Rhizoctonia solani: hyperparasite and hydrolytic enzyme. AGRIVITA J. Agric. Sci. 42 (2), 1–10. https://doi.org/10.17503/agrivita.v0i0.2514 (2020).
-
Morais, E. M. et al. Endophytic trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi. PLOS ONE. 17 (4), e0265824. https://doi.org/10.1371/journal.pone.0265824 (2022).
-
Zanfaño, L. et al. Biosolutions from native Trichoderma strains against grapevine trunk diseases. Agronomy 15, 1901. https://doi.org/10.3390/agronomy15081901 (2025).
-
Al-Shuaibi, B. K. et al. Biological control potential of Trichoderma Ghanense and Trichoderma Citrinoviride toward Pythium aphanidermatum. J. Fungi. 10, 284. https://doi.org/10.3390/jof10040284 (2024).
-
Hajji-Hedfi, L., Rhouma, A., Wannassi, T., Utkina, A. O. & Rebouh, N. Y. Biocontrol assessment of Trichoderma species on tomato crops infested by Curvularia spicifera: toward sustainable farming systems. Front. Sustain. Food Syst. 9, 1627903. https://doi.org/10.3389/fsufs.2025.1627903 (2025).
-
Al-Mekhlafi, N. A., Abdullah, Q. Y., Al-Helali, M. F. & Alghalibi, S. M. Antagonistic potential of native Trichoderma species against tomato fungal pathogens in Yemen. Int. J. Mol. Microbiol. 2 (1), 1–10 (2019).
-
Rifai, M. A. A revision of the genus Trichoderma. Mycol. Pap. 116, 1–56 (1969).
-
Bissett, J. A revision of the genus Trichoderma. II. Infrageneric classification. Can. J. Bot. 69 (11), 2357–2372 (1991).
-
Samuels, G. J., Ismaiel, A., Bon, M.-C., De Respinis, S. & Petrini, O. Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia. 102 (4), 944–966. https://doi.org/10.3852/09‑243 (2010).
-
Hermosa, M. R. et al. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl. Environ. Microbiol. 66 (5), 1890–1898. https://doi.org/10.1128/aem.66.5.1890-1898.2000 (2000).
-
Dugassa, A., Alemu, T. & Woldehawariat, Y. -vitro compatibility assay of Indigenous Trichoderma and Pseudomonas species and their antagonistic activities against black root rot disease (Fusarium solani) of Faba bean (Vicia Faba L). BMC Microbiol. 21, 1–11. https://doi.org/10.1186 s12866-021-02181-7 (2021).
-
Bell, D. K. Vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathol 72, 379 (1982).
-
Dennis, C. & Webster, J. Antagonistic properties of species-groups of Trichoderma. Trans. Br. Mycol. Soc. 57, 41–47 (1971).
-
Sivakumar, D., Wijeratnam, R. S. W., Wijesundera, R. L. C., Marikar, F. M. T. & Abeyesekere, M. Antagonistic effect of Trichoderma Harzianum on postharvest pathogens of Rambutan (Nephelium lappaceum). Phytoparasitica 28 (3), 240–247 (2000).
-
Bhat, K. A. A. New agar plate assisted slide culture technique to study mycoparasitism of Trichoderma sp. on Rhizoctonia Solani and Fusarium oxysporium. Int. IJCMAS. 6 (8), 3176–3180. https://doi.org/10.20546/ijcmas.2017.608.378 (2017).
