References
-
Liesche, J., Ziomkiewicz, I. & Schulz, A. Super-resolution imaging with pontamine fast scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells. BMC Plant. Biol. 13, 226 (2013).
-
Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).
-
Rozario, T. & DeSimone, D. W. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341, 126–140 (2010).
-
Hoffmann, G. A., Wong, J. Y. & Smith, M. L. On force and form: mechano-biochemical regulation of extracellular matrix. Biochemistry 58, 4710–4720 (2019).
-
Scarr, G. Fascial hierarchies and the relevance of crossed-helical arrangements of collagen to changes in the shape of muscles. J. Bodyw. Mov. Ther. 20, 377–387 (2016).
-
Anderson, R. H., Niederer, P. F., Sanchez‐Quintana, D., Stephenson, R. S. & Agger, P. How are the cardiomyocytes aggregated together within the walls of the left ventricular cone? J. Anat. 235, 697–705 (2019).
-
Bontempi, M. et al. Understanding the structure-function relationship through 3D imaging and biomechanical analysis: a novel methodological approach applied to anterior cruciate ligaments. Biomimetics 9, 477 (2024).
-
Franchi, M., Trirè, A., Quaranta, M., Orsini, E. & Ottani, V. Collagen structure of tendon relates to function. Sci. World 7, 404–420 (2007).
-
Hooks, D. A. et al. Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ. Res. 101, 103–112 (2007).
-
Holmes, D. F. et al. Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. Proc. Natl Acad. Sci. USA. 98, 7307–7312 (2001).
-
Feinberg, A. W. et al. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33, 5732–5741 (2012).
-
Zhang, L. & Szeri, A. Z. Transport of neutral solute in articular cartilage: effect of microstructure anisotropy. J. Biomech. 41, 430–437 (2008).
-
Kim, K. et al. Dynamic hierarchical ligand anisotropy for competing macrophage regulation in vivo. Bioact. Mater. 47, 121–135 (2025).
-
Bril, M. et al. Shape-morphing photoresponsive hydrogels reveal dynamic topographical conditioning of fibroblasts. Adv. Sci. 10, 2303136 (2023).
-
Ghonim, S. et al. Myocardial architecture, mechanics, and fibrosis in congenital heart disease. Front. Cardiovasc. Med. 4, 258682 (2017).
-
Santodomingo-Rubido, J. et al. Keratoconus: an updated review. Contact Lens Anterior Eye 45, 101559 (2022).
-
Brazile, B. L. et al. Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction. J. Mech. Behav. Biomed. Mater. 116, 1–23 (2021).
-
Liew, L. C., Ho, B. X. & Soh, B. S. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res. Ther. 11, 138 (2020).
-
Tompkins, B. A., Natsumeda, M., Balkan, W. & Hare, J. M. What is the future of cell-based therapy for acute myocardial infarction. Circ. Res. 120, 252–255 (2017).
-
van den Boom, N. A. C., Winters, M., Haisma, H. J. & Moen, M. H. Efficacy of stem cell therapy for tendon disorders: a systematic review. Orthop. J. Sports Med. 8, 4 (2020).
-
Wissing, T. B. et al. Biomaterial-driven in situ cardiovascular tissue engineering — a multi-disciplinary perspective. NJP Regen. Med. 2, 18 (2017).
-
Hwang, D. G., Choi, Y. M. & Jang, J. 3D bioprinting-based vascularized tissue models mimicking tissue-specific architecture and pathophysiology for in vitro studies. Front. Bioeng. Biotechnol. 9, 685507 (2021).
-
Uiterwijk, M. et al. In situ remodeling overrules bioinspired scaffold architecture of supramolecular elastomeric tissue-engineered heart valves. JACC Basic Transl. Sci. 5, 1187 (2020).
-
Mercer, S. E. et al. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PLoS One 7, e52375 (2012).
-
Torrent-Guasp, F. et al. Towards new understanding of the heart structure and function. Eur. J. Cardiothorac. Surg. 27, 191–201 (2005).
-
Takebayashi-Suzuki, K. & Suzuki, A. Intracellular communication among morphogen signaling pathways during vertebrate body plan formation. Genes 24, 341 (2020).
-
Kim, S., Uroz, M., Bays, J. L. & Chen, C. S. Harnessing mechanobiology for tissue engineering. Dev. Cell. 56, 180–191 (2021).
-
Kahane, N. & Kalcheim, C. Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome. Development 147, dev183996 (2020).
-
Lui, L. et al. Nodel is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nat. Commun. 13, 497 (2022).
-
Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418, 96–99 (2002).
-
Gros, J., Feistel, K., Viebahn, C., Blum, M. & Tabin, C. J. Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick. Science 324, 941–944 (2009).
-
Strutt, D., Madder, D., Chaudhary, V. & Artymiuk, P. J. Structure-function dissection of the frizzled receptor in Drosophila melanogaster suggests different mechanisms of action in planar polarity and canonical wnt signaling. Genetics 192, 1295–1313 (2012).
-
Vetter, R. & Iber, D. Precision of morphogen gradients in neural tube development. Nat. Commun. 13, 1145 (2022).
-
Adelmann, J. A., Vetter, R. & Iber, D. Patterning precision under non-linear morphogen decay and molecular noise. eLife 12, e84757 (2023).
-
Dickmann, J. E. M., Rink, J. C. & Jülicher, F. Long-range morphogen gradient formation by cell-to-cell signal propagation. Phys. Biol. 7, 19 (2022).
-
Ho, R. D. J. G. et al. Dynamics of morphogen source formation in a growing tissue. PLoS Comput. Biol. 14, e1012508 (2024).
-
Mosby, L. S., Bowen, A. E. & Hadjivasiliou, Z. Morphogens in the evolution of size, shape and patterning. Development 15, dev202412 (2024).
-
Travascio, F., Devaux, F., Volz, M. & Jackson, A. R. Molecular and macromolecular diffusion in human meniscus: relationships with tissue structure and composition. Osteoarthr. Cartil. 28, 375–382 (2020).
-
Kenny, F. N. et al. Autocrine IL-6 drives cell and extracellular matrix anisotropy in scar fibroblasts. Matrix Biol. 123, 1–16 (2023).
-
Canse, C., Yildirim, E. & Yaba, A. Overview of junctional complexes during mammalian early embryonic development. Front. Endocrinol. 14, 1150017 (2023).
-
Sánchez-Iranzo, H., Halavatyi, A. & Diz-Muñoz, A. Strength of interactions in the notch gene regulatory network determines patterning and fate in the notochord. eLife 6, e75429 (2022).
-
Bocci, F., Onuchic, J. N. & Jolly, M. K. Understanding the principles of pattern formation driven by notch signaling by integrating experiments and theoretical models. Front. Physiol. 31, 929 (2020).
-
Mammoto, T. & Ingber, D. E. Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010).
-
Duclos, G., Garcia, S., Yevick, H. G. & Silberzan, P. Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter. 14, 2346–2353 (2014).
-
Luo, Y. et al. Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers. J. R. Soc. Interface. 20, 20230160 (2023).
-
Park, D. et al. Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nat. Mater. 19, 227–238 (2020).
-
Alert, R. & Trepat, X. Living cells on the move. Phys. Today 74, 30–36 (2021).
-
Kim, J. et al. Stress-induced plasticity of dynamic collagen networks. Nat. Commun. 8, 842 (2017).
-
Leivo, I., Vaheri, A., Timpl, R. & Wartiovaara, J. Appearance and distribution of collagens and laminin in the early mouse embryo. Dev. Biol. 76, 100–114 (1980).
-
Legerstee, K., Geverts, B., Slotman, J. A. & Houtsmuller, A. B. Dynamics and distribution of paxillin, vinculin, zyxin and VASP depend on focal adhesion location and orientation. Sci. Rep. 9, 10460 (2019).
-
Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).
-
Wu, X., Cesarovic, N., Falk, V., Mazza, E. & Giampietro, C. Mechanical factors influence β-catenin localization and barrier properties. Integr. Biol. 16, zyae013 (2024).
-
Tan, H. & Tan, S. The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining α-tubulin acetylation. J. Biol. Chem. 295, 5928–5943 (2020).
-
Shang, N. et al. Focal adhesion kinase and β-catenin cooperate to induce hepatocellular carcinoma. Hepatology. 70, 1631–1645 (2019).
-
Fisher, R. S. et al. Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates. Proc. Natl Acad. Sci. USA. 118, e2021135118 (2021).
-
Buskermolen, A. B. C. et al. Cellular contact guidance emerges from gap avoidance. Cell Rep. Phys. Sci. 1, 100055 (2020).
-
Ray, A. et al. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nat. Commun. 8, 14923 (2017).
-
Böhringer, D. et al. Dynamic traction force measurements of migrating immune cells in 3D biopolymer matrices. Nat. Phys. 20, 1816–1823 (2024).
-
Jones, D. L. et al. Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proc. Natl Acad. Sci. USA. 30, e2211947120 (2023).
-
Karamanos, N. K. et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 228, 6850–6912 (2021).
-
Wartiovaara, J., Leivo, I. & Vaheri, A. Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo. Dev. Biol. 69, 247–257 (1979).
-
Gelse, K., Pöschl, E. & Aigner, T. Collagens — structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).
-
Guo, X. et al. Morphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts. Invest. Ophthalmol. Vis. Sci. 48, 4050–4060 (2007).
-
Hasenzahl, M., Müsken, M., Mertsch, S., Schrader, S. & Reichl, S. Cell sheet technology: influence of culture conditions on in vitro‐cultivated corneal stromal tissue for regenerative therapies of the ocular surface. J. Biomed. Mater. Res. B Appl. Biomater. 109, 1488–1504 (2021).
-
Leclech, C. & Villard, C. Cellular and subcellular contact guidance on microfabricated substrates. Front. Bioeng. Biotechnol. 8, 1198 (2020).
-
Niu, Y. et al. Compressive stress improves mechanical properties of mineralized collagen by dynamically regulating its mineralization — a closed-loop regulation mechanism. Mater. Des. 239, 112830 (2024).
-
Hammerman, M., Pierantoni, M., Isaksson, H. & Eliasson, P. Deprivation of loading during rat achilles tendon healing affects extracellular matrix composition and structure, and reduces cell density and alignment. Sci. Rep. 14, 23380 (2024).
-
Potekaev, N. N. et al. The role of extracellular matrix in skin wound healing. J. Clin. Med. 10, 5947 (2021).
-
Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).
-
Chow, M., Turcotte, R., Lin, C. P. & Zhang, Y. Arterial extracellular matrix: a mechanobiological study of the contributions of interactions of elastin and collagen. Biophys. J. 106, 2684–2692 (2014).
-
Cabral-Pacheco, G. A. et al. The roles of matrix metalloproteinases and their inhibitors in human disease. Int. J. Mol. Sci. 21, 9739 (2020).
-
Wang, W. Y., Davidson, C. D., Lin, D. & Baker, B. M. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration. Nat. Commun. 10, 1186 (2019).
-
De Jonge, N., Kanters, F. M. W., Baaijens, F. P. T. & Bouten, C. V. C. Strain-induced collagen organization at the micro-level in fibrin-based engineered tissue constructs. Ann. Biomed. Eng. 41, 763–774 (2013).
-
Yeganegi, A., Whitehead, K., de Castro Brás, L. E. & Richardson, W. J. Mechanical strain modulates extracellular matrix degradation and byproducts in an isoform-specific manner. Biochim. Biophys. Acta Gen. Subj. 1867, 130286 (2022).
-
Humphrey, J. D. & Schwartz, M. A. Vascular mechanobiology: homeostasis, adaptation, and disease. Annu. Rev. Biomed. Eng. 13, 1–27 (2021).
-
Tschumperlin, D. J., Ligresti, G., Hilscher, M. B. & Shah, V. H. Mechanosensing and fibrosis. J. Clin. Invest. 128, 74–84 (2018).
-
Contessotto, P. et al. Reproducing extracellular matrix adverse remodelling of non-ST myocardial infarction in a large animal model. Nat. Commun. 127, 995 (2023).
-
Zhou, Z. et al. Reorganized collagen in the tumor microenvironment of gastric cancer and its association with prognosis. J. Cancer. 8, 1466–1476 (2017).
-
Paidi, S. K. et al. Label-free Raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer. Cancer Res. 77, 247–256 (2017).
-
Mierke, C. T. Extracellular matrix cues regulate mechanosensing and mechanotransduction of cancer cells. Cells 2, 96 (2024).
-
Hsu, K. S. et al. Cancer cell survival depends on collagen uptake into tumor-associated stroma. Nat. Commun. 13, 7078 (2022).
-
Yuan, Z. et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanics to treatments. Mol. Cancer. 22, 48 (2023).
-
Thorseth, M.-L. et al. Uncovering mediators of collagen degradation in the tumor microenvironment. Matrix Biol. Plus 13, 100101 (2022).
-
Ermis, M., Antmen, E. & Hasirci, V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective. Bioact. Mater. 3, 355–369 (2018).
-
Pramotton, F. M. et al. Accelerated epithelial layer healing induced by tactile anisotropy in surface topography. Sci. Adv. 9, eadd1581 (2023).
-
Strale, P. O. et al. Multiprotein printing by light-induced molecular adsorption. Adv. Mater. 28, 2024–2029 (2016).
-
Perl, A., Reinhoudt, D. N. & Huskens, J. Microcontact printing: limitations and achievements. Adv. Mater. 21, 2257–2268 (2009).
-
Liu, C. et al. Sustained biochemical signaling and contact guidance by electrospun bicomponents as promising scaffolds for nerve tissue regeneration. ACS Omega 6, 33010–33017 (2021).
-
Flores-Rojas, G. G. et al. Electrospun scaffolds for tissue engineering: a review. Macromol 3, 524–553 (2023).
-
Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J. & Nealey, P. F. Epithelial contact guidance of well-defined micro- and nanostructured substrates. J. Cell Sci. 116, 1881–1892 (2003).
-
Hamilton, D. W., Oates, C. J., Hasanzadeh, A. & Mittler, S. Migration of periodontal ligament fibroblasts on nanometric topographical patterns: influence of filopodia and focal adhesions on contact guidance. PLoS One 5, e15129 (2010).
-
Kim, D. H. et al. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30, 5433–5444 (2009).
-
Linke, P. et al. Dynamic contact guidance of myoblasts by feature size and reversible switching of substrate topography: orchestration of cell shape, orientation, and nematic ordering of actin cytoskeletons. Langmuir 35, 7538–7551 (2019).
-
Sun, Q., Qiu, T., Liu, X. & Wei, Q. Cellular spatial sensing determines cell mechanotransduction activity on the aligned nanofibers. Small 21, e2410351 (2025).
-
Serbo, J. V. et al. Patterning of fibroblast and matrix anisotropy within 3D confinement is driven by the cytoskeleton. Adv. Healthc. Mater. 5, 146–158 (2015).
-
Ilina, O. et al. Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22, 1103–1115 (2020).
-
Yamada, K. M., Doyle, A. D. & Lu, J. Cell-3D matrix interactions: recent advances and opportunities. Trends Cell Biol. 32, 883–895 (2022).
-
van der Putten, C. et al. Dimensionality matters: exploiting UV-photopatterned 2D and two-photon-printed 2.5D contact guidance cues to control corneal fibroblast behavior and collagen deposition. Bioengineering 11, 402 (2024).
-
Bian, W., Jackman, C. P. & Bursac, N. Controlling the structural and functional anisotropy of engineered cardiac tissues. Biofabrication 6, 024109 (2015).
-
Jia, X. et al. A multifunctional anisotropic patch manufactured by microfluidic manipulation for the repair of infarcted myocardium. Adv. Mater. 36, 2404071 (2024).
-
Werner, M., Petersen, A., Kurniawan, N. A. & Bouten, C. V. C. Cell‐perceived substrate curvature dynamically coordinates the direction, speed, and persistence of stromal cell migration. Adv. Biosyst. 3, 1900080 (2019).
-
Connon, C. J. & Gouveia, R. M. Milliscale substrate curvature promotes myoblast self‐organization and differentiation. Adv. Biol. 5, 2000280 (2021).
-
Schamberger, B. et al. Curvature in biological systems: its quantification, emergence, and implications across the scales. Adv. Mater. 35, e2206110 (2023).
-
Callens, S. J. P., Uyttendaele, R. J. C., Fratila-Apachitei, L. E. & Zadpoor, A. A. Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 232, 119739 (2020).
-
Baptista, D., Teixeira, L., van Blitterswijk, C., Giselbrecht, S. & Truckenmüller, R. Overlooked? Underestimated? Effects of substrate curvature on cell behavior. Trends Biotechnol. 37, 838–854 (2019).
-
Werner, M. et al. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv. Sci. 4, 1600347 (2017).
-
Werner, M., Kurniawan, N. A. & Bouten, C. V. C. Cellular geometry sensing at different length scales and its implications for scaffold design. Materials 13, 963 (2020).
-
Werner, M., Kurniawan, N. A., Korus, G., Bouten, C. V. C. & Petersen, A. Mesoscale substrate curvature overrules nanoscale contact guidance to direct bone marrow stromal cell migration. J. R. Soc. Interface. 15, 20180162 (2018).
-
Fioretta, E. S., Simonet, M., Smits, A. I. P. M., Baaijens, F. P. T. & Bouten, C. V. C. Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters. Biomacromolecules 15, 821–829 (2014).
-
Liu, C. et al. Collective cell polarization and alignment of curved surfaces. J. Mech. Behav. Biomed. Mater. 88, 330–339 (2018).
-
Gouveia, R. M., Koudouna, E., Jester, J., Figueiredo, F. & Connon, C. J. Template curvature influences cell alignment to create improved human corneal tissue equivalents. Adv. Biosyst. 1, 1700135 (2017).
-
Wohlgemuth, R. P. et al. Strain-dependent dynamic re-alignment of collagen fibers in skeletal muscle extracellular matrix. Acta Biomaterialia 187, 227–241 (2024).
-
Ristori, T. et al. Modelling the combined effects of collagen and cyclic strain on cellular orientation in collagenous tissues. Sci. Rep. 8, 8518 (2018).
-
Kaunas, R., Nguyen, P., Usami, S. & Chien, S. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl Acad. Sci. USA 102, 15895–15900 (2005).
-
Tamiello, C. et al. Cellular strain avoidance is mediated by a functional actin cap — observations in an Lmna-deficient cell model. J. Cell Sci. 130, 779–790 (2017).
-
Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.e22 (2020).
-
Tamiello, C., Bouten, C. V. C. & Baaijens, F. P. T. Competition between cap and basal actin fiber orientation in cells subjected to contact guidance and cyclic strain. Sci. Rep. 5, 8752 (2015).
-
Wang, J. H. C. & Grood, E. S. The strain magnitude and contact guidance determine orientation response of fibroblasts to cyclic substrate strains. Connect. Tissue Res. 41, 29–36 (2000).
-
Tondon, A. & Kaunas, R. The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress. PLoS One 9, 89592 (2014).
-
Chen, K. et al. Role of boundary conditions in determining cell alignment in response to stretch. Proc. Natl Acad. Sci. USA 115, 986–991 (2018).
-
Gaul, R. T. et al. Pressure-induced collagen degradation in arterial tissue as a potential mechanism for degenerative arterial disease progression. J. Mech. Behav. Biomed. Mater. 109, 103771 (2020).
-
Pei, D. et al. Remodeling of aligned fibrous extracellular matrix by encapsulated cells under mechanical stretching. Acta Biomater. 112, 202–212 (2020).
-
Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003).
-
Foolen, J., Deshpande, V. S., Kanters, F. M. W. & Baaijens, F. P. T. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials 33, 7508–7518 (2012).
-
Mostert, D. et al. Human pluripotent stem cell-derived cardiomyocytes align under cyclic strain when guided by cardiac fibroblasts. APL Bioeng. 6, 046108 (2022).
-
Van Haaften, E. E. et al. Decoupling the effect of shear stress and stretch on tissue growth and remodeling in a vascular graft. Tissue Eng. Part C Methods 24, 418–429 (2018).
-
Ando, J. & Yamamoto, K. Vascular mechanobiology endothelial cell responses to fluid shear stress. Circ. J. 73, 1983–1992 (2009).
-
Levesque, M. J. & Nerem, R. M. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107, 341–347 (1985).
-
Egorova, A. D. et al. Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ. Res. 108, 1093–1101 (2011).
-
Jones, T. J. et al. Primary cilia regulates the directional migration and barrier integrity of endothelial cells through the modulation of hsp27 dependent actin cytoskeletal organization. J. Cell Physiol. 227, 70–76 (2012).
-
van der Meer, A. D., Poot, A. A., Feijen, J. & Vermes, I. Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics 4, 11103 (2010).
-
Vion, A. C. et al. Endothelial cell orientation and polarity are controlled by shear stress and VEGF through distinct signaling pathways. Front. Physiol. 11, 1743 (2021).
-
Nerger, B. A., Brun, P. T. & Nelson, C. M. Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Sci. Adv. 6, eaaz7748 (2020).
-
Kim, S. et al. Recent technological advances in lab-on-a-chip for bone remodeling. Biosens. Bioelectron. X 14, 100360 (2023).
-
Nerger, B. A., Brun, P. T. & Nelson, C. M. Microextrusion printing cell-laden networks of type i collagen with patterned fiber alignment and geometry. Soft Matter 15, 5728–5738 (2019).
-
Muncie, J. M. & Weaver, V. M. The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr. Top. Dev. Biol. 130, 1–37 (2018).
-
Yue, B. Biology of the extracellular matrix: an overview. J. Glaucoma 23, S20–S23 (2014).
-
Wang, Y., Wang, X., Wohland, T. & Sampath, K. Extracellular interactions and ligand degradation shape the nodal morphogen gradient. eLife 5, e13879 (2016).
-
Lin, B. & Levchenko, A. Spatial manipulation with microfluidics. Front. Bioeng. Biotechnol. 3, 39 (2015).
-
Mathieu, M., Isomursu, A. & Ivaska, J. Positive and negative durotaxis — mechanisms and emerging concepts. J. Cell Sci. 137, jcs261919 (2024).
-
McGuigan, A. P. & Javaherian, S. Tissue patterning: translating design principles from in vivo to in vitro. Annu. Rev. Biomed. Eng. 18, 1–24 (2016).
-
Zhao, F. et al. Fibroblast alignment and matrix remodeling induced by a stiffness gradient in a skin-derived extracellular matrix hydrogel. Acta Biomater. 1, 67–80 (2024).
-
van der Putten, C. et al. Protein micropatterning in 2.5D: an approach to investigate cellular responses in multi-cue environments. ACS Appl. Mater. Interfaces 13, 25589–25598 (2021).
-
Vartanian, K. B., Kirkpatrick, S. J., Hanson, S. R. & Hinds, M. T. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem. Biophys. Res. Commun. 371, 787–792 (2008).
-
Ristori, T., Vigliotti, A., Baaijens, F. P. T., Loerakker, S. & Deshpande, V. S. Prediction of cell alignment on cyclically strained grooved substrates. Biophys. J. 111, 2274–2285 (2016).
-
Bliley, J. M. et al. Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. Sci. Transl. Med. 13, eabd1817 (2021).
-
Dede Eren, A. et al. The loop of phenotype: dynamic reciprocity links tenocyte morphology to tendon tissue homeostasis. Acta Biomater. 163, 275–286 (2023).
-
Jing, J. et al. Reciprocal interaction between mesenchymal stem cells and transit amplifying cells regulates tissue homeostasis. eLife 10, e59459 (2021).
-
Bril, M., Fredrich, S. & Kurniawan, N. A. Stimuli-responsive materials: a smart way to study dynamic cell responses. Smart Mater. Med. 3, 257–273 (2022).
-
Madl, C. M. et al. Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory. Proc. Natl Acad. Sci. USA. 121, e2406787121 (2024).
-
Rosales, A. M. et al. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew. Chem. 129, 12300–12304 (2017).
-
Scott, S. et al. Dynamic and reversible tuning of hydrogel viscoelasticity by transient polymer interactions for controlling cell adhesion. Adv. Mater. 37, 2408616 (2025).
-
Li, T. et al. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomater. 156, 21–36 (2023).
-
Wang, Z. et al. Functional regeneration of tendons using scaffolds with physical anisotropy engineered via microarchitectural manipulation. Sci. Adv. 4, 10 (2018).
-
Yao, S. et al. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth. Nanoscale 8, 10252–10265 (2016).
-
Han, J., Wu, Q., Xia, Y., Wagner, M. B. & Xu, C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res. 16, 740–750 (2016).
-
Fomovsky, G. M. et al. Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circ. Heart Fail. 5, 515–522 (2012).
-
Clarke, S. A. et al. Effect of scar compaction on the therapeutic efficacy of anisotropic reinforcement following myocardial infarction in the dog. J. Cardiovasc. Transl. Res. 8, 353–361 (2015).
-
Mondrinos, M. J. et al. Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. Sci. Adv. 7, eabe9446 (2021).
-
Xu, F. et al. Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors. Microsyst. Nanoeng. 10, 96 (2024).
-
Herrera-Perez, R. M. et al. Tissue flows are tuned by actomyosin-dependent mechanics in developing embryos. PRX Life 1, 013004 (2023).
-
Chandrasekar, S., Beach, J. R. & Oakes, P. W. Shining a light on RhoA: optical control of cell contractility. Int. J. Biochem. Cell Biol. 161, 106442 (2023).
-
Shoyer, T. C. et al. Coupling during collective cell migration is controlled by a vinculin mechanochemical switch. Proc. Natl Acad. Sci. USA. 120, e2316456120 (2023).
-
Mauretti, A. et al. Cardiomyocyte progenitor cell mechanoresponse unrevealed: strain avoidance and mechanosome development. Integr. Biol. 8, 991–1001 (2016).
-
Carton, F. et al. Cardiac differentiation promotes focal adhesions assembly through vinculin recruitment. Int. J. Mol. Sci. 24, 2444 (2023).
-
Mittal, N. et al. Myosin-independent stiffness sensing by fibroblasts is regulated by the viscoelasticity of flowing actin. Commun. Mater. 5, 6 (2024).
-
Meinert, C. et al. A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineering human cartilage. Sci. Rep. 7, 16997 (2017).
-
Rama, E. et al. In vitro and in vivo evaluation of biohybrid tissue-engineered vascular grafts with transformative 1H/19F MRI traceable scaffolds. Biomaterials 311, 122669 (2024).
-
Wang, X. et al. Anisotropy links cell shapes to tissue flow during convergent extension. Proc. Natl Acad. Sci. USA 117, 13541–13551 (2020).
-
Aper, S. J. A. et al. Colorful protein-based fluorescent probes for collagen imaging. PLoS One 9, e114983 (2014).
-
Fiore, A. et al. Live imaging of the extracellular matrix with a glycan-binding fluorophore. Nat. Methods 22, 1070–1080 (2025).
-
Daetwyler, S. et al. Imaging of cellular dynamics from a whole organism to subcellular scale with self-driving, multiscale microscopy. Nat. Methods 22, 569–578 (2025).
-
Punoyuori, K. et al. Multiparameter imaging reveals clinically relevant cancer cell-stroma interaction dynamics in head and neck cancer. Cell 187, 7267–7284 (2024).
-
Loveless, T. B. et al. Open-ended molecular recording of sequential cellular events into DNA. Nat. Chem. Biol. 21, 512–521 (2025).
-
Godivier, J., Lawrence, E. A., Wang, M., Hammond, C. L. & Nowlan, N. C. Compressive stress gradients direct mechanoregulation of anisotropic growth in the zebrafish jaw joint. PLoS Comput. Biol. 20, e1010940 (2024).
-
Pacary, A. et al. A computational model reveals an early transient decrease in fiber cross-linking that unlocks adult regeneration. NPJ Regen. Med. 9, 29 (2024).
-
Humphrey, J. D. Mechanisms of vascular remodeling in hypertension. Am. J. Hypertens. 34, 432–441 (2020).
-
Loerakker, S. et al. Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis. Proc. Natl Acad. Sci. USA 115, 3682–3691 (2018).
-
Best, C. A. et al. Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomater. 94, 183–194 (2019).
-
Emmert, M. Y. et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Transl. Med. 10, eaan4587 (2018).
-
Tan, W., Boodagh, P., Selvakumar, P. P. & Keyser, S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front. Bioeng. Biotechnol. 10, 1097334 (2023).
-
Xing, J. et al. Engineering complex anisotropic scaffolds beyond simply uniaxial alignment for tissue engineering. Adv. Funct. Mater. 32, 2110676 (2022).
-
Skillin, N. P. et al. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment. Sci. Adv. 10, eadn0235 (2024).
-
Jorba, I. et al. Steering cell orientation through light-based spatiotemporal modulation of the mechanical environment. Biofabrication 16, https://doi.org/10.1088/1758-5090/ad3aa6 (2024).
-
Xue, Y. et al. Biomimetic conductive hydrogel scaffolds with anisotropy and electrical stimulation for in vivo skeletal muscle reconstruction. Adv. Healthc. Mater. 13, e2302180 (2024).
-
Liu, N., Becton, M., Zhang, L., Tang, K. & Wang, X. Mechanical anisotropy of two-dimensional metamaterials: a computational study. Nanoscale Adv. 8, 2891–2900 (2019).
-
Burdick, J. A., Khademhosseini, A. & Langer, R. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20, 5153–5156 (2004).
-
Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962).
-
Evans, E. B., Brady, S. W., Tripathi, A. & Hoffman-Kim, D. Schwann cell durotaxis can be guided by physiologically relevant stiffness gradients. Biomater. Res. 22, 14 (2018).
-
Keenan, T. M. & Folch, A. Biomolecular gradients in cell culture systems. Lab. Chip 8, 34–57 (2007).
-
Shirure, V. S. et al. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 20, 493–504 (2017).
-
Guo, T. et al. Mitochondrial fission and bioenergetics mediate human lung fibroblast durotaxis. JCI Insight 8, e157348 (2023).
-
Ferre-Torres, J. et al. Modelling of chemotactic sprouting endothelial cells through an extracellular matrix. Front. Bioeng. Biotechnol. 11, 1145550 (2023).
-
Mohammed, M. et al. Studying the response of aortic endothelial cells under pulsatile flow using a compact microfluidic system. Anal. Chem. 91, 12077–12084 (2019).
-
Driessen, R. et al. Computational characterization of the dish-in-a-dish, a high yield culture platform for endothelial shear stress studies on the orbital shaker. Micromachines 11, 552 (2020).
-
Nakayama, K. H. et al. Nanoscale patterning of extracellular matrix alters endothelial function under shear stress. Nano Lett. 16, 410–419 (2016).
-
Yevick, H. G. et al. Architecture and migration of an epithelium on a cylindrical wire. Proc. Natl Acad. Sci. USA 112, 5944–5949 (2015).
-
Ye, M. et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci. Rep. 4, 4681 (2014).
-
Tamiello, C., Buskermolen, A. B. C., Baaijens, F. P. T., Broers, J. L. V. & Bouten, C. V. C. Heading in the right direction: understanding cellular orientation response to complex biophysical environments. Cell Mol. Bioeng. 9, 12–37 (2016).
-
Chen, Y. et al. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci. Rep. 5, 9980 (2015).
-
Kohn, J. C. et al. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophysical J. 108, 471–478 (2015).
-
Schmidt, A., Greenhalgh, A., Jockenhoevel, S., Fernandez-Colino, A. & Frydrych, M. Manufacturing of anisotropic protein-based scaffolds to precisely mimic native-tissue mechanics. Adv. Mater. Technol. 10, 2400946 (2025).
-
Wei, X. et al. Hierarchically biomimetic scaffolds with anisotropic micropores and nanotopological patterns to promote bone regeneration via geometric modulation. Adv. Healthc. Mater. 13, e2304178 (2024).
-
Garrido, C. A. et al. Hydrogels with stiffness-degradation spatial patterns control anisotropic 3D cell response. Biomater. Adv. 151, 213423 (2023).
-
Vedaraman, S. et al. Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based anisogels. Biomater. Sci. 9, 4329–4342 (2021).
-
Gaspar, V. M. et al. Advanced bottom-up engineering of living architectures. Adv. Mater. 32, 6 (2020).
-
Wu, H. et al. Advancing Scaffold-assisted modality for in situ osteochondral regeneration: a shift from biodegradable to bioadaptable. Adv. Mater. 36, 47 (2024).