Biomaterials with droplet microfluidics

biomaterials-with-droplet-microfluidics
Biomaterials with droplet microfluidics

References

  1. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Article  Google Scholar 

  2. Blache, U. et al. Engineered hydrogels for mechanobiology. Nat. Rev. Methods Primers 2, 98 (2022).

    Article  Google Scholar 

  3. Yousefpour, P., Ni, K. & Irvine, D. J. Targeted modulation of immune cells and tissues using engineered biomaterials. Nat. Rev. Bioeng. 1, 107–124 (2023).

    Article  Google Scholar 

  4. Madl, C. M. & Heilshorn, S. C. Engineering hydrogel microenvironments to recapitulate the stem cell niche. Annu. Rev. Biomed. Eng. 20, 21–47 (2018).

    Article  Google Scholar 

  5. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  Google Scholar 

  6. Yorke, S. K. et al. Design and sustainability of polypeptide material systems. Nat. Rev. Mater. 10, 750–768 (2025).

    Article  Google Scholar 

  7. Sundaram, S. et al. Sacrificial capillary pumps to engineer multiscalar biological forms. Nature 636, 361–367 (2024).

    Article  Google Scholar 

  8. Lavrador, P., Moura, B. S., Almeida-Pinto, J., Gaspar, V. M. & Mano, J. F. Engineered nascent living human tissues with unit programmability. Nat. Mater. 24, 143–154 (2025).

    Article  Google Scholar 

  9. Vargo, E. et al. Functional composites by programming entropy-driven nanosheet growth. Nature 623, 724–731 (2023).

    Article  Google Scholar 

  10. Muir, V. G. & Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 121, 10908–10949 (2020).

    Article  Google Scholar 

  11. Daly, A. C., Riley, L., Segura, T. & Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2020).

    Article  Google Scholar 

  12. Daly, A. C. Granular hydrogels in biofabrication: recent advances and future perspectives. Adv. Healthc. Mater. 13, 2301388 (2024).

    Article  Google Scholar 

  13. Xu, Y. et al. Recent advances in microgels: from biomolecules to functionality. Small 18, 2200180 (2022).

    Article  Google Scholar 

  14. Moragues, T. et al. Droplet-based microfluidics. Nat. Rev. Methods Primers 3, 32 (2023).

    Article  Google Scholar 

  15. Lou, J. & Mooney, D. J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 6, 726–744 (2022).

    Article  Google Scholar 

  16. Mohamed, M. G. et al. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. Lab Chip 19, 1621–1632 (2019).

    Article  Google Scholar 

  17. Ou, Y. et al. Bioprinting microporous functional living materials from protein-based core-shell microgels. Nat. Commun. 14, 322 (2023). This work highlights the use of droplet microfluidics to control cellular microenvironments in 3D-bioprinted functional living materials.

    Article  Google Scholar 

  18. Mao, A. S. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater. 16, 236–243 (2017).

    Article  Google Scholar 

  19. Highley, C. B., Song, K. H., Daly, A. C. & Burdick, J. A. Jammed microgel inks for 3D printing applications. Adv. Sci. 6, 1801076 (2019). The seminal work of using jammed microgels as a generalizable 3D printing ink.

    Article  Google Scholar 

  20. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015). The original work of microporous annealed particles for tissue engineering.

    Article  Google Scholar 

  21. Li, X. et al. Smart fluorosurfactant-assisted microfluidics powered on-demand generation and retrieval of cell-laden microgels. Adv. Mater. Interfaces 12, 2500178 (2025).

    Article  Google Scholar 

  22. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article  Google Scholar 

  23. Li, J., Wang, Y., Cai, L., Shang, L. & Zhao, Y. High-throughput generation of microgels in centrifugal multi-channel rotating system. Chem. Eng. J. 427, 130750 (2022).

    Article  Google Scholar 

  24. de Rutte, J. M., Koh, J. & Di Carlo, D. Scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Adv. Funct. Mater. 29, 1900071 (2019).

    Article  Google Scholar 

  25. Baroud, C. N., Gallaire, F. & Dangla, R. Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010).

    Article  Google Scholar 

  26. Gregoire, J. M., Zhou, L. & Haber, J. A. Combinatorial synthesis for AI-driven materials discovery. Nat. Synth. 2, 493–504 (2023).

    Article  Google Scholar 

  27. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article  Google Scholar 

  28. Zhang, Y. S. et al. 3D extrusion bioprinting. Nat. Rev. Methods Primers 1, 75 (2021).

    Article  Google Scholar 

  29. Jiao, D., Zhu, Q. L., Li, C. Y., Zheng, Q. & Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. Acc. Chem. Res. 55, 1533–1545 (2022).

    Article  Google Scholar 

  30. Rommel, D. et al. Functionalized microgel rods interlinked into soft macroporous structures for 3D cell culture. Adv. Sci. 9, 2103554 (2022).

    Article  Google Scholar 

  31. Xu, Y. et al. Liquid–liquid phase-separated systems from reversible gel–sol transition of protein microgels. Adv. Mater. 33, 2008670 (2021).

    Article  Google Scholar 

  32. Shah, R. K. et al. Designer emulsions using microfluidics. Mater. Today 11, 18–27 (2008).

    Article  Google Scholar 

  33. Wang, H. et al. One-step generation of core–shell gelatin methacrylate (GelMA) microgels using a droplet microfluidic system. Adv. Mater. Technol. 4, 1800632 (2019).

    Article  Google Scholar 

  34. Wang, H. et al. Flexible generation of multi-aqueous core hydrogel capsules using microfluidic aqueous two-phase system. Adv. Mater. Technol. 5, 2000045 (2020).

    Article  Google Scholar 

  35. Xu, Y. et al. Deformable and robust core–shell protein microcapsules templated by liquid–liquid phase-separated microdroplets. Adv. Mater. Interfaces 8, 2101071 (2021).

    Article  Google Scholar 

  36. Udani, S. et al. Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq. Nat. Nanotechnol. 19, 354–363 (2024).

    Article  Google Scholar 

  37. Chen, Q. et al. Controlled assembly of heterotypic cells in a core–shell scaffold: organ in a droplet. Lab Chip 16, 1346–1349 (2016).

    Article  Google Scholar 

  38. Zhang, L. et al. Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells. Small 14, 1702955 (2018).

    Article  Google Scholar 

  39. Bouhlel, W., Kui, J., Bibette, J. & Bremond, N. Encapsulation of cells in a collagen matrix surrounded by an alginate hydrogel shell for 3D cell culture. ACS Biomater. Sci. Eng. 8, 2700–2708 (2022).

    Article  Google Scholar 

  40. Hu, Y. et al. Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking. Biomicrofluidics 6, 26502–265029 (2012).

    Article  Google Scholar 

  41. Zhan, Z. et al. Hierarchically porous microgels with interior spiral canals for high-efficiency delivery of stem cells in wound healing. Small 21, 2405648 (2025).

    Article  Google Scholar 

  42. Xu, Y. et al. Microfluidic templating of spatially inhomogeneous protein microgels. Small 16, 2000432 (2020).

    Article  Google Scholar 

  43. Abate, A. R., Chen, C.-H., Agresti, J. J. & Weitz, D. A. Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip 9, 2628–2631 (2009).

    Article  Google Scholar 

  44. Martel, J. M. & Toner, M. Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng. 16, 371–396 (2014).

    Article  Google Scholar 

  45. Ou, Y. et al. Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. Trends Analyt. Chem. 143, 116333 (2021).

    Article  Google Scholar 

  46. Arter, W. E. et al. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat. Commun. 13, 7845 (2022). This work highlights the capability of droplet microfluidics for combinatorial biomolecular assays.

    Article  Google Scholar 

  47. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  Google Scholar 

  48. Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017). The first work to demonstrate the use of microgels for single-cell genomic sequencing.

    Article  Google Scholar 

  49. Lan, F. et al. Massively parallel single-cell sequencing of diverse microbial populations. Nat. methods 21, 228–235 (2024).

    Article  Google Scholar 

  50. Leonaviciene, G., Leonavicius, K., Meskys, R. & Mazutis, L. Multi-step processing of single cells using semi-permeable capsules. Lab Chip 20, 4052–4062 (2020).

    Article  Google Scholar 

  51. Li, L. et al. Permeability-engineered compartmentalization enables in vitro reconstitution of sustained synthetic biology systems. Adv. Sci. 9, 2203652 (2022).

    Article  Google Scholar 

  52. Tang, T.-C. et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat. Chem. Biol. 17, 724–731 (2021).

    Article  Google Scholar 

  53. Zhao, S. et al. A new design for living cell-based biosensors: microgels with a selectively permeable shell that can harbor bacterial species. Sens. Actuators B Chem. 334, 129648 (2021).

    Article  Google Scholar 

  54. Wen, H. et al. Microfluidic encapsulation of supramolecular optical chemosensors for high-throughput analysis and screening. Sens. Actuators B Chem. 355, 131302 (2022).

    Article  Google Scholar 

  55. van Zee, M. et al. High-throughput selection of cells based on accumulated growth and division using PicoShell particles. Proc. Natl Acad. Sci. USA 119, e2109430119 (2022).

    Article  Google Scholar 

  56. Napiorkowska, M., Pestalozzi, L., Panke, S., Held, M. & Schmitt, S. High-throughput optimization of recombinant protein production in microfluidic gel beads. Small 17, 2005523 (2021).

    Article  Google Scholar 

  57. Ochoa, A., Gastélum, G., Rocha, J. & Olguin, L. F. High-throughput bacterial co-encapsulation in microfluidic gel beads for discovery of antibiotic-producing strains. Analyst 148, 5762–5774 (2023).

    Article  Google Scholar 

  58. Chen, J. et al. Single cell microgels for high-throughput magnetic sorting and sequencing of antigen-specific antibodies. Adv. Funct. Mater. 34, 2314560 (2024).

    Article  Google Scholar 

  59. Nakagawa, Y. et al. Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. Lab Chip 21, 3793–3803 (2021).

    Article  Google Scholar 

  60. Liu, L., Dalal, C. K., Heineike, B. M. & Abate, A. R. High throughput gene expression profiling of yeast colonies with microgel-culture Drop-seq. Lab Chip 19, 1838–1849 (2019).

    Article  Google Scholar 

  61. Adu-Berchie, K. et al. Generation of functionally distinct T-cell populations by altering the viscoelasticity of their extracellular matrix. Nat. Biomed. Eng. 7, 1374–1391 (2023).

    Article  Google Scholar 

  62. Mittelheisser, V. et al. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. Nat. Nanotechnol. 19, 281–297 (2024).

    Article  Google Scholar 

  63. Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).

    Article  Google Scholar 

  64. Kim, S.-J., Kim, E. M., Yamamoto, M., Park, H. & Shin, H. Engineering multi-cellular spheroids for tissue engineering and regenerative medicine. Adv. Healthc. Mater. 9, 2000608 (2020).

    Article  Google Scholar 

  65. Sart, S., Ronteix, G., Jain, S., Amselem, G. & Baroud, C. N. Cell culture in microfluidic droplets. Chem. Rev. 122, 7061–7096 (2022).

    Article  Google Scholar 

  66. Tevis, K. M., Colson, Y. L. & Grinstaff, M. W. Embedded spheroids as models of the cancer microenvironment. Adv. Biosyst. 1, 1700083 (2017).

    Article  Google Scholar 

  67. Toda, S., Blauch, L. R., Tang, S. K., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science 361, 156–162 (2018).

    Article  Google Scholar 

  68. Baker, B. M. & Chen, C. S. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012). This review provides a mechanistic and comprehensive introduction to the fundamentals of 3D cell culture.

    Google Scholar 

  69. Raghavan, S. et al. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis. J. Cell Sci. 123, 2877–2883 (2010).

    Article  Google Scholar 

  70. Wang, H. et al. Bioinspired one cell culture isolates highly tumorigenic and metastatic cancer stem cells capable of multilineage differentiation. Adv. Sci. 7, 2000259 (2020).

    Article  Google Scholar 

  71. Fang, G. et al. Mammary tumor organoid culture in non-adhesive alginate for luminal mechanics and high-throughput drug screening. Adv. Sci. 8, 2102418 (2021).

    Article  Google Scholar 

  72. Özkale, B. et al. Actuated 3D microgels for single cell mechanobiology. Lab Chip 22, 1962–1970 (2022).

    Article  Google Scholar 

  73. Zhu, H. et al. Core–shell spheroid-laden microgels crosslinked under biocompatible conditions for probing cancer–stromal communication. Adv. NanoBiomed Res. 2, 2200138 (2022).

    Article  Google Scholar 

  74. Kamperman, T. et al. Steering stem cell fate within 3D living composite tissues using stimuli-responsive cell-adhesive micromaterials. Adv. Sci. 10, 2205487 (2023).

    Article  Google Scholar 

  75. Kohler, T. N. et al. Plakoglobin is a mechanoresponsive regulator of naive pluripotency. Nat. Commun. 14, 4022 (2023).

    Article  Google Scholar 

  76. Cordero-Espinoza, L. et al. Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation. Cell Stem Cell 28, 1907–1921 (2021).

    Article  Google Scholar 

  77. Schindler, M. et al. Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells. Stem Cell Rep. 16, 1347–1362 (2021).

    Article  Google Scholar 

  78. Munger, C. et al. Microgel culture and spatial identity mapping elucidate the signalling requirements for primate epiblast and amnion formation. Development 149, dev200263 (2022).

    Article  Google Scholar 

  79. Lee, D. & Cha, C. Cell subtype-dependent formation of breast tumor spheroids and their variable responses to chemotherapeutics within microfluidics-generated 3D microgels with tunable mechanics. Mater. Sci. Engineering C. 112, 110932 (2020).

    Article  Google Scholar 

  80. Saupe, M. et al. Droplet-based cell viability assay for analysis of spheroid formation, proliferation and high-resolution IC50 profiling. Lab Chip 25, 6138–6156 (2025).

    Article  Google Scholar 

  81. Sabhachandani, P. et al. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. J. Controlled Rel. 295, 21–30 (2019).

    Article  Google Scholar 

  82. Ronteix, G. et al. High resolution microfluidic assay and probabilistic modeling reveal cooperation between T cells in tumor killing. Nat. Commun. 13, 3111 (2022).

    Article  Google Scholar 

  83. Sun, Q. et al. Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing. ACS Biomater. Sci. Eng. 4, 4425–4433 (2018).

    Article  Google Scholar 

  84. Araújo-Gomes, N. et al. Microfluidic generation of thin-shelled polyethylene glycol-tyramine microgels for non-invasive delivery of immunoprotected β-cells. Adv. Healthc. Mater. 13, 2301552 (2024).

    Article  Google Scholar 

  85. van Loo, B., Schot, M., Gurian, M., Kamperman, T. & Leijten, J. Single-step biofabrication of in situ spheroid-forming compartmentalized hydrogel for clinical-sized cartilage tissue formation. Adv. Healthc. Mater. 13, 2300095 (2024).

    Article  Google Scholar 

  86. Liu, H. et al. A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Adv. Sci. 7, 1903739 (2020).

    Article  Google Scholar 

  87. Song, T., Zhang, H., Luo, Z., Shang, L. & Zhao, Y. Primary human pancreatic cancer cells cultivation in microfluidic hydrogel microcapsules for drug evaluation. Adv. Sci. 10, 2206004 (2023).

    Article  Google Scholar 

  88. Sart, S., Tomasi, R. F.-X., Amselem, G. & Baroud, C. N. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nat. Commun. 8, 469 (2017).

    Article  Google Scholar 

  89. Mulas, C. et al. Microfluidic platform for 3D cell culture with live imaging and clone retrieval. Lab Chip 20, 2580–2591 (2020).

    Article  Google Scholar 

  90. de Hoyos-Vega, J. M. et al. Microfluidic 3D hepatic cultures integrated with a droplet-based bioanalysis unit. Biosens. Bioelectron. 248, 115896 (2024).

    Article  Google Scholar 

  91. Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).

    Article  Google Scholar 

  92. Tomasi, R. F.-X., Sart, S., Champetier, T. & Baroud, C. N. Individual control and quantification of 3D spheroids in a high-density microfluidic droplet array. Cell Rep. 31, 107670 (2020).

    Article  Google Scholar 

  93. Saint-Sardos, A. et al. High-throughput measurements of intra-cellular and secreted cytokine from single spheroids using anchored microfluidic droplets. Small 16, 2002303 (2020).

    Article  Google Scholar 

  94. Bonnet, V. et al. Cancer-on-a-chip model shows that the adenomatous polyposis coli mutation impairs T cell engagement and killing of cancer spheroids. Proc. Natl Acad. Sci. USA 121, e2316500121 (2024).

    Article  Google Scholar 

  95. Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. 22, 818–831 (2023).

    Article  Google Scholar 

  96. Xu, S. et al. Stimuli-responsive hydrogels composed of modified cellulose nanocrystal and gelatin with oriented channels for guiding axonal myelination. Carbohydr. Polym. 356, 123402 (2025).

    Article  Google Scholar 

  97. Harimoto, T., Jung, W.-H. & Mooney, D. J. Delivering living medicines with biomaterials. Nat. Rev. Mater. 10, 191–210 (2025).

    Article  Google Scholar 

  98. Toprakcioglu, Z., Challa, P. K., Morse, D. B. & Knowles, T. Attoliter protein nanogels from droplet nanofluidics for intracellular delivery. Sci. Adv. 6, eaay7952 (2020).

    Article  Google Scholar 

  99. Saucedo-Espinosa, M. A., Breitfeld, M. & Dittrich, P. S. Continuous electroformation of gold nanoparticles in nanoliter droplet reactors. Angew. Chem. Int. Ed. 62, e202212459 (2023).

    Article  Google Scholar 

  100. Zhang, Q. et al. Formation of protein nanoparticles in microdroplet flow reactors. ACS nano 17, 11335–11344 (2023).

    Article  Google Scholar 

  101. Headen, D. M. et al. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat. Mater. 17, 732–739 (2018).

    Article  Google Scholar 

  102. Lei, J. et al. FasL microgels induce immune acceptance of islet allografts in nonhuman primates. Sci. Adv. 8, eabm9881 (2022).

    Article  Google Scholar 

  103. Pan, S. et al. Multifunctional injectable hydrogel microparticles loaded with miR-29a abundant BMSCs derived exosomes enhanced bone regeneration by regulating osteogenesis and angiogenesis. Small 20, 2306721 (2024).

    Article  Google Scholar 

  104. Yin, Z. et al. Injectable hyperbranched PEG crosslinked hyaluronan hydrogel microparticles containing mir-99a-3p modified subcutaneous ADSCs-derived exosomes was beneficial for long-term treatment of osteoarthritis. Mater. Today Bio 23, 100813 (2023).

    Article  Google Scholar 

  105. Sun, J. et al. Mesenchymal stem cell-laden composite β cell porous microgel for diabetes treatment. Adv. Funct. Mater. 33, 2211897 (2023).

    Article  Google Scholar 

  106. Yang, C. et al. Adhesive composite microspheres with dual antibacterial strategies for infected wound healing. Small 19, 2301092 (2023).

    Article  Google Scholar 

  107. Johnbosco, C. et al. Microencapsulated stem cells reduce cartilage damage in a material dependent manner following minimally invasive intra-articular injection in an OA rat model. Mater. Today Bio 22, 100791 (2023).

    Article  Google Scholar 

  108. Fang, Z., Yang, X. & Shang, L. Microfluidic-derived montmorillonite composite microparticles for oral codelivery of probiotic biofilm and postbiotics. Sci. Adv. 11, eadt2131 (2025).

    Article  Google Scholar 

  109. Wang, R. et al. Poly-γ-glutamic acid microgel-encapsulated probiotics with gastric acid resistance and smart inflammatory factor targeted delivery performance to ameliorate colitis. Adv. Funct. Mater. 32, 2113034 (2022).

    Article  Google Scholar 

  110. Chen, X. et al. Suspended bubble microcapsule delivery systems from droplet microfluidic technology for the local treatment of gastric cancer. Chem. Eng. J. 458, 141428 (2023).

    Article  Google Scholar 

  111. Lin, X. et al. Light-activated extracellular matrix microcarriers with engineered MSCs loading for autoimmune psoriasis treatment. Chem. Eng. J. 470, 144118 (2023).

    Article  Google Scholar 

  112. Griffin, D. R. et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021).

    Article  Google Scholar 

  113. Cha, C. et al. Microfluidics-assisted fabrication of gelatin-silica core–shell microgels for injectable tissue constructs. Biomacromolecules 15, 283–290 (2014).

    Article  Google Scholar 

  114. Yang, C., Ding, X., Yang, C., Shang, L. & Zhao, Y. Marine polymers-alginate/chitosan composited microcapsules for wound healing. Chem. Eng. J. 456, 140886 (2023).

    Article  Google Scholar 

  115. Yang, L., Yang, W., Xu, W., Zhao, Y. & Shang, L. Bio-inspired Janus microcarriers with sequential actives release for bone regeneration. Chem. Eng. J. 476, 146797 (2023).

    Article  Google Scholar 

  116. Darling, N. J., Sideris, E., Hamada, N., Carmichael, S. T. & Segura, T. Injectable and spatially patterned microporous annealed particle (MAP) hydrogels for tissue repair applications. Adv. Sci. 5, 1801046 (2018).

    Article  Google Scholar 

  117. Wilson, K. L. et al. SDF-1 bound heparin nanoparticles recruit progenitor cells for their differentiation and promotion of angiogenesis after stroke. Adv. Healthc. Mater. 13, 2302081 (2024).

    Article  Google Scholar 

  118. Fang, J. et al. Injectable drug-releasing microporous annealed particle scaffolds for treating myocardial infarction. Adv. Funct. Mater. 30, 2004307 (2020).

    Article  Google Scholar 

  119. Caprio, N. D., Davidson, M. D., Daly, A. C. & Burdick, J. A. Injectable MSC spheroid and microgel granular composites for engineering tissue. Adv. Mater. 36, 2312226 (2024).

    Article  Google Scholar 

  120. Kent, R. N. III et al. Physical and soluble cues enhance tendon progenitor cell invasion into injectable synthetic hydrogels. Adv. Funct. Mater. 32, 2207556 (2022).

    Article  Google Scholar 

  121. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    Article  Google Scholar 

  122. An, C. et al. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration. Acta Biomaterialia 157, 91–107 (2023).

    Article  Google Scholar 

  123. Feng, Q. et al. Injection and self-assembly of bioinspired stem cell-laden gelatin/hyaluronic acid hybrid microgels promote cartilage repair in vivo. Adv. Funct. Mater. 29, 1906690 (2019).

    Article  Google Scholar 

  124. Li, F. et al. Microencapsulation improves chondrogenesis in vitro and cartilaginous matrix stability in vivo compared to bulk encapsulation. Biomater. Sci. 8, 1711–1725 (2020).

    Article  Google Scholar 

  125. Wong, S. W. et al. Inhibition of aberrant tissue remodelling by mesenchymal stromal cells singly coated with soft gels presenting defined chemomechanical cues. Nat. Biomed. Eng. 6, 54–66 (2022).

    Article  Google Scholar 

  126. Liu, A. J. & Nagel, S. R. Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (CRC Press, 2001).

  127. Menut, P., Seiffert, S., Sprakel, J. & Weitz, D. A. Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter 8, 156–164 (2012).

    Article  Google Scholar 

  128. Emiroglu, D. B. et al. Building block properties govern granular hydrogel mechanics through contact deformations. Sci. Adv. 8, eadd8570 (2022).

    Article  Google Scholar 

  129. James, N. M., Han, E., de la Cruz, R. A. L., Jureller, J. & Jaeger, H. M. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 17, 965–970 (2018).

    Article  Google Scholar 

  130. Richards, J. A., O’Neill, R. E. & Poon, W. C. Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction. Rheologica Acta 60, 97–106 (2021).

    Article  Google Scholar 

  131. Riley, L., Schirmer, L. & Segura, T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr. Opin. Biotechnol. 60, 1–8 (2019).

    Article  Google Scholar 

  132. Lee, H.-P. et al. Dynamically cross-linked granular hydrogels for 3D printing and therapeutic delivery. ACS Appl. Bio Mater. 6, 3683–3695 (2023).

    Article  Google Scholar 

  133. Muir, V. G. et al. Sticking together: injectable granular hydrogels with increased functionality via dynamic covalent inter-particle crosslinking. Small 18, 2201115 (2022).

    Article  Google Scholar 

  134. Mealy, J. E. et al. Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv. Mater. 30, 1705912 (2018).

    Article  Google Scholar 

  135. Xin, S., Dai, J., Gregory, C. A., Han, A. & Alge, D. L. Creating physicochemical gradients in modular microporous annealed particle hydrogels via a microfluidic method. Adv. Funct. Mater. 30, 1907102 (2020).

    Article  Google Scholar 

  136. Tigner, T. J. et al. Clickable granular hydrogel scaffolds for delivery of neural progenitor cells to sites of spinal cord injury. Adv. Healthc. Mater. 13, 2303912 (2024).

    Article  Google Scholar 

  137. Kuang, G., Zhang, Q., Li, W. & Zhao, Y. Biomimetic tertiary lymphoid structures with microporous annealed particle scaffolds for cancer postoperative therapy. ACS Nano 18, 9176–9186 (2024).

    Article  Google Scholar 

  138. Li, F. et al. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomaterialia 77, 48–62 (2018).

    Article  Google Scholar 

  139. Zhang, J. et al. Transforming cell–drug interaction through granular hydrogel-mediated delivery of polyplex nanoparticles for enhanced safety and extended efficacy in gene therapy. ACS Appl. Mater. Interfaces 16, 39784–39795 (2024).

    Article  Google Scholar 

  140. Wu, G. et al. Improving liposome delivery with macroporous granular hydrogels synthesized through freezing-facilitated secondary crosslinking of macromonomers. Adv. Mater. Interfaces 10, 2300262 (2023).

    Article  Google Scholar 

  141. Truong, N. F. et al. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomaterialia 94, 160–172 (2019).

    Article  Google Scholar 

  142. Karimi, F. et al. Photocrosslinked silk fibroin microgel scaffolds for biomedical applications. Adv. Funct. Mater. 34, 2313354 (2024).

    Article  Google Scholar 

  143. Jaberi, A. et al. Engineering microgel packing to tailor the physical and biological properties of gelatin methacryloyl granular hydrogel scaffolds. Adv. Healthc. Mater. 13, 2402489 (2024).

    Article  Google Scholar 

  144. Lowen, J. M. et al. Multisized photoannealable microgels regulate cell spreading, aggregation, and macrophage phenotype through microporous void space. Adv. Healthc. Mater. 12, 2202239 (2023).

    Article  Google Scholar 

  145. Nerger, B. A. et al. Tuning porosity of macroporous hydrogels enables rapid rates of stress relaxation and promotes cell expansion and migration. Proc. Natl Acad. Sci. USA 121, e2410806121 (2024). This work highlights that stress relaxation of jammed microgels is tunable by packing density, and it affects cell behaviours in vitro.

    Article  Google Scholar 

  146. Krattiger, L. A. et al. Microfluidic platforms to screen granular hydrogel microenvironments for tissue regeneration. Adv. Funct. Mater. 34, 2310507 (2024).

    Article  Google Scholar 

  147. Ross, B. C. et al. Building-block size mediates microporous annealed particle hydrogel tube microenvironment following spinal cord injury. Adv. Healthc. Mater. 13, 2302498 (2024).

    Article  Google Scholar 

  148. Tanner, G. I., Schiltz, L., Narra, N., Figueiredo, M. L. & Qazi, T. H. Granular hydrogels improve myogenic invasion and repair after volumetric muscle loss. Adv. Healthc. Mater. 13, 2303576 (2024).

    Article  Google Scholar 

  149. Pfaff, B. N., Flanagan, C. C. & Griffin, D. R. Microporous annealed particle (MAP) scaffold pore size influences mesenchymal stem cell metabolism and proliferation without changing CD73, CD90, and CD105 expression over two weeks. Adv. Biol. 8, 2300482 (2024).

    Article  Google Scholar 

  150. Casella, A. et al. Conductive microgel annealed scaffolds enhance myogenic potential of myoblastic cells. Adv. Healthc. Mater. 13, 2302500 (2024).

    Article  Google Scholar 

  151. Ataie, Z. et al. Accelerating patterned vascularization using granular hydrogel scaffolds and surgical micropuncture. Small 20, 2307928 (2024).

    Article  Google Scholar 

  152. Schot, M. et al. Photoannealing of microtissues creates high-density capillary network containing living matter in a volumetric-independent manner. Adv. Mater. 36, 2308949 (2024).

    Article  Google Scholar 

  153. Liu, Y. et al. Exploring the role of spatial confinement in immune cell recruitment and regeneration of skin wounds. Adv. Mater. 35, 2304049 (2023).

    Article  Google Scholar 

  154. Liu, Y. et al. Spatial confinement modulates macrophage response in microporous annealed particle (MAP) scaffolds. Adv. Healthc. Mater. 12, 2300823 (2023).

    Article  Google Scholar 

  155. Qazi, T. H. et al. Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Adv. Mater. 34, 2109194 (2022).

    Article  Google Scholar 

  156. Tang, R.-C., Shang, L., Scumpia, P. O. & Di Carlo, D. Injectable microporous annealed crescent-shaped (MAC) particle hydrogel scaffold for enhanced cell infiltration. Adv. Healthc. Mater. 13, 2302477 (2024).

    Article  Google Scholar 

  157. Daly, A. C., Prendergast, M. E., Hughes, A. J. & Burdick, J. A. Bioprinting for the biologist. Cell 184, 18–32 (2021).

    Article  Google Scholar 

  158. He, F. et al. 3D Printed biocatalytic living materials with dual-network reinforced bioinks. Small 18, 2104820 (2022).

    Article  Google Scholar 

  159. Xin, S. et al. Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting. Sci. Adv. 7, eabk3087 (2021).

    Article  Google Scholar 

  160. He, Y. et al. Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016).

    Article  Google Scholar 

  161. Xin, S., Chimene, D., Garza, J. E., Gaharwar, A. K. & Alge, D. L. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomater. Sci. 7, 1179–1187 (2019).

    Article  Google Scholar 

  162. Zhang, J. et al. Injectable granular hydrogels as colloidal assembly microreactors for customized structural colored objects. Angew. Chem. 134, e202206339 (2022).

    Article  Google Scholar 

  163. Charlet, A., Bono, F. & Amstad, E. Mechanical reinforcement of granular hydrogels. Chem. Sci. 13, 3082–3093 (2022).

    Article  Google Scholar 

  164. Li, Y. et al. Biocatalytic living materials built by compartmentalized microorganisms in annealable granular hydrogels. Chem. Eng. J. 445, 136822 (2022).

    Article  Google Scholar 

  165. Miksch, C. E. et al. 4D printing of extrudable and degradable poly (ethylene glycol) microgel scaffolds for multidimensional cell culture. Small 18, 2200951 (2022).

    Article  Google Scholar 

  166. Deo, K. A. et al. Granular biphasic colloidal hydrogels for 3D bioprinting. Adv. Healthc. Mater. 13, 2303810 (2024).

    Article  Google Scholar 

  167. Wang, Y. et al. Advancing engineered plant living materials through tobacco BY-2 cell growth and transfection within tailored granular hydrogel scaffolds. ACS Cent. Sci. 10, 1094–1104 (2024).

    Article  Google Scholar 

  168. Seymour, A. J., Shin, S. & Heilshorn, S. C. 3D printing of microgel scaffolds with tunable void fraction to promote cell infiltration. Adv. Healthc. Mater. 10, 2100644 (2021).

    Article  Google Scholar 

  169. Zhang, H. et al. Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth. Adv. Funct. Mater. 30, 1910573 (2020).

    Article  Google Scholar 

  170. Seymour, A. J., Kilian, D., Navarro, R. S., Hull, S. M. & Heilshorn, S. C. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels. Biomater. Sci. 11, 7598–7615 (2023).

    Article  Google Scholar 

  171. Cao, Y. et al. Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration. Nat. Commun. 13, 7463 (2022).

    Article  Google Scholar 

  172. Zhang, Y., Tan, C. M., Toepfer, C. N., Lu, X. & Bayley, H. Microscale droplet assembly enables biocompatible multifunctional modular iontronics. Science 386, 1024–1030 (2024).

    Article  Google Scholar 

  173. Li, X. et al. Inkjet bioprinting of biomaterials. Chem. Rev. 120, 10793–10833 (2020).

    Article  Google Scholar 

  174. Kim, H. H. et al. Parallelization of microfluidic droplet junctions for ultraviscous fluids. Small 18, 2205001 (2022).

    Article  Google Scholar 

  175. van Loo, B. et al. Mass production of uminogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat. Commun. 14, 6685 (2023).

    Article  Google Scholar 

  176. Song, Y., Sauret, A. & Shum, H. C. All-aqueous multiphase microfluidics. Biomicrofluidics 7, 61301 (2013).

    Article  Google Scholar 

  177. Wyss, H. M., Franke, T., Mele, E. & Weitz, D. A. Capillary micromechanics: measuring the elasticity of microscopic soft objects. Soft Matter 6, 4550–4555 (2010).

    Article  Google Scholar 

  178. Xu, Y. et al. Micromechanics of soft materials using microfluidics. MRS Bull. 47, 119–126 (2022).

    Article  Google Scholar 

  179. Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem. Soc. Rev. 49, 5850–5884 (2020).

    Article  Google Scholar 

  180. Squires, T. M. & Mason, T. G. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413–438 (2010).

    Article  Google Scholar 

  181. Yao, A., Tassieri, M., Padgett, M. & Cooper, J. Microrheology with optical tweezers. Lab Chip 9, 2568–2575 (2009).

    Article  Google Scholar 

  182. Nakajima, K. et al. Mechanical profiling of biopolymer condensates through acoustic trapping. Preprint at bioRxiv https://doi.org/10.1101/2024.09.16.613217 (2024).

  183. Gerum, R. et al. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. eLife 11, e78823 (2022).

    Article  Google Scholar 

  184. Allazetta, S., Negro, A. & Lutolf, M. Microfluidic programming of compositional hydrogel landscapes. Macromol. Rapid Commun. 38, 1700255 (2017).

    Article  Google Scholar 

  185. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Article  Google Scholar 

  186. Meng, Z., Yan, H. & Wang, Y. Granular metamaterials with dynamic bond reconfiguration. Sci. Adv. 10, eadq7933 (2024).

    Article  Google Scholar 

  187. Shen, X. et al. Achieving adjustable elasticity with non-affine to affine transition. Nat. Mater. 20, 1635–1642 (2021).

    Article  Google Scholar 

  188. Djellouli, A. et al. Shell buckling for programmable metafluids. Nature 628, 545–550 (2024).

    Article  Google Scholar 

  189. Riley, L., Cheng, P. & Segura, T. Identification and analysis of 3D pores in packed particulate materials. Nat. Computational Sci. 3, 975–992 (2023).

    Article  Google Scholar 

  190. Cubuk, E. D. et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017). This work demonstrates a machine learning approach to study granular materials and uncovers striking similarity among a wide range of disordered solid systems.

    Article  Google Scholar 

  191. Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).

    Article  Google Scholar 

  192. Blatchley, M. R. & Anseth, K. S. Middle-out methods for spatiotemporal tissue engineering of organoids. Nat. Rev. Bioeng. 1, 329–345 (2023).

    Article  Google Scholar 

  193. Huang, M. S., Christakopoulos, F., Roth, J. G. & Heilshorn, S. C. Organoid bioprinting: from cells to functional tissues. Nat. Rev. Bioeng. 3, 126–142 (2025).

    Article  Google Scholar 

  194. Ho, D. L. et al. Large-scale production of wholly cellular bioinks via the optimization of human induced pluripotent stem cell aggregate culture in automated bioreactors. Adv. Healthc. Mater. 11, 2201138 (2022).

    Article  Google Scholar 

  195. Daly, A. C., Davidson, M. D. & Burdick, J. A. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat. Commun. 12, 753 (2021).

    Article  Google Scholar 

  196. Fang, Y. et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv. Mater. 35, 2205082 (2023).

    Article  Google Scholar 

  197. Marcotulli, M. et al. Microfluidic 3D printing of emulsion ink for engineering porous functionally graded materials. Adv. Mater. Technol. 8, 2201244 (2023).

    Article  Google Scholar 

  198. Hull, S. M. et al. 3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators. Sci. Adv. 9, eade7880 (2023).

    Article  Google Scholar 

  199. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. et al. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  Google Scholar 

  200. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019). A pioneering work using organoids as a printing bath to construct tissue-level cell density in biofabricated structures.

    Article  Google Scholar 

  201. You, S. et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9, eade7923 (2023).

    Article  Google Scholar 

Download references