References
-
Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).
-
Blache, U. et al. Engineered hydrogels for mechanobiology. Nat. Rev. Methods Primers 2, 98 (2022).
-
Yousefpour, P., Ni, K. & Irvine, D. J. Targeted modulation of immune cells and tissues using engineered biomaterials. Nat. Rev. Bioeng. 1, 107–124 (2023).
-
Madl, C. M. & Heilshorn, S. C. Engineering hydrogel microenvironments to recapitulate the stem cell niche. Annu. Rev. Biomed. Eng. 20, 21–47 (2018).
-
Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).
-
Yorke, S. K. et al. Design and sustainability of polypeptide material systems. Nat. Rev. Mater. 10, 750–768 (2025).
-
Sundaram, S. et al. Sacrificial capillary pumps to engineer multiscalar biological forms. Nature 636, 361–367 (2024).
-
Lavrador, P., Moura, B. S., Almeida-Pinto, J., Gaspar, V. M. & Mano, J. F. Engineered nascent living human tissues with unit programmability. Nat. Mater. 24, 143–154 (2025).
-
Vargo, E. et al. Functional composites by programming entropy-driven nanosheet growth. Nature 623, 724–731 (2023).
-
Muir, V. G. & Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 121, 10908–10949 (2020).
-
Daly, A. C., Riley, L., Segura, T. & Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2020).
-
Daly, A. C. Granular hydrogels in biofabrication: recent advances and future perspectives. Adv. Healthc. Mater. 13, 2301388 (2024).
-
Xu, Y. et al. Recent advances in microgels: from biomolecules to functionality. Small 18, 2200180 (2022).
-
Moragues, T. et al. Droplet-based microfluidics. Nat. Rev. Methods Primers 3, 32 (2023).
-
Lou, J. & Mooney, D. J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 6, 726–744 (2022).
-
Mohamed, M. G. et al. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. Lab Chip 19, 1621–1632 (2019).
-
Ou, Y. et al. Bioprinting microporous functional living materials from protein-based core-shell microgels. Nat. Commun. 14, 322 (2023). This work highlights the use of droplet microfluidics to control cellular microenvironments in 3D-bioprinted functional living materials.
-
Mao, A. S. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater. 16, 236–243 (2017).
-
Highley, C. B., Song, K. H., Daly, A. C. & Burdick, J. A. Jammed microgel inks for 3D printing applications. Adv. Sci. 6, 1801076 (2019). The seminal work of using jammed microgels as a generalizable 3D printing ink.
-
Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015). The original work of microporous annealed particles for tissue engineering.
-
Li, X. et al. Smart fluorosurfactant-assisted microfluidics powered on-demand generation and retrieval of cell-laden microgels. Adv. Mater. Interfaces 12, 2500178 (2025).
-
Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).
-
Li, J., Wang, Y., Cai, L., Shang, L. & Zhao, Y. High-throughput generation of microgels in centrifugal multi-channel rotating system. Chem. Eng. J. 427, 130750 (2022).
-
de Rutte, J. M., Koh, J. & Di Carlo, D. Scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Adv. Funct. Mater. 29, 1900071 (2019).
-
Baroud, C. N., Gallaire, F. & Dangla, R. Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010).
-
Gregoire, J. M., Zhou, L. & Haber, J. A. Combinatorial synthesis for AI-driven materials discovery. Nat. Synth. 2, 493–504 (2023).
-
Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).
-
Zhang, Y. S. et al. 3D extrusion bioprinting. Nat. Rev. Methods Primers 1, 75 (2021).
-
Jiao, D., Zhu, Q. L., Li, C. Y., Zheng, Q. & Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. Acc. Chem. Res. 55, 1533–1545 (2022).
-
Rommel, D. et al. Functionalized microgel rods interlinked into soft macroporous structures for 3D cell culture. Adv. Sci. 9, 2103554 (2022).
-
Xu, Y. et al. Liquid–liquid phase-separated systems from reversible gel–sol transition of protein microgels. Adv. Mater. 33, 2008670 (2021).
-
Shah, R. K. et al. Designer emulsions using microfluidics. Mater. Today 11, 18–27 (2008).
-
Wang, H. et al. One-step generation of core–shell gelatin methacrylate (GelMA) microgels using a droplet microfluidic system. Adv. Mater. Technol. 4, 1800632 (2019).
-
Wang, H. et al. Flexible generation of multi-aqueous core hydrogel capsules using microfluidic aqueous two-phase system. Adv. Mater. Technol. 5, 2000045 (2020).
-
Xu, Y. et al. Deformable and robust core–shell protein microcapsules templated by liquid–liquid phase-separated microdroplets. Adv. Mater. Interfaces 8, 2101071 (2021).
-
Udani, S. et al. Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq. Nat. Nanotechnol. 19, 354–363 (2024).
-
Chen, Q. et al. Controlled assembly of heterotypic cells in a core–shell scaffold: organ in a droplet. Lab Chip 16, 1346–1349 (2016).
-
Zhang, L. et al. Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells. Small 14, 1702955 (2018).
-
Bouhlel, W., Kui, J., Bibette, J. & Bremond, N. Encapsulation of cells in a collagen matrix surrounded by an alginate hydrogel shell for 3D cell culture. ACS Biomater. Sci. Eng. 8, 2700–2708 (2022).
-
Hu, Y. et al. Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking. Biomicrofluidics 6, 26502–265029 (2012).
-
Zhan, Z. et al. Hierarchically porous microgels with interior spiral canals for high-efficiency delivery of stem cells in wound healing. Small 21, 2405648 (2025).
-
Xu, Y. et al. Microfluidic templating of spatially inhomogeneous protein microgels. Small 16, 2000432 (2020).
-
Abate, A. R., Chen, C.-H., Agresti, J. J. & Weitz, D. A. Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip 9, 2628–2631 (2009).
-
Martel, J. M. & Toner, M. Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng. 16, 371–396 (2014).
-
Ou, Y. et al. Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. Trends Analyt. Chem. 143, 116333 (2021).
-
Arter, W. E. et al. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat. Commun. 13, 7845 (2022). This work highlights the capability of droplet microfluidics for combinatorial biomolecular assays.
-
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).
-
Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017). The first work to demonstrate the use of microgels for single-cell genomic sequencing.
-
Lan, F. et al. Massively parallel single-cell sequencing of diverse microbial populations. Nat. methods 21, 228–235 (2024).
-
Leonaviciene, G., Leonavicius, K., Meskys, R. & Mazutis, L. Multi-step processing of single cells using semi-permeable capsules. Lab Chip 20, 4052–4062 (2020).
-
Li, L. et al. Permeability-engineered compartmentalization enables in vitro reconstitution of sustained synthetic biology systems. Adv. Sci. 9, 2203652 (2022).
-
Tang, T.-C. et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat. Chem. Biol. 17, 724–731 (2021).
-
Zhao, S. et al. A new design for living cell-based biosensors: microgels with a selectively permeable shell that can harbor bacterial species. Sens. Actuators B Chem. 334, 129648 (2021).
-
Wen, H. et al. Microfluidic encapsulation of supramolecular optical chemosensors for high-throughput analysis and screening. Sens. Actuators B Chem. 355, 131302 (2022).
-
van Zee, M. et al. High-throughput selection of cells based on accumulated growth and division using PicoShell particles. Proc. Natl Acad. Sci. USA 119, e2109430119 (2022).
-
Napiorkowska, M., Pestalozzi, L., Panke, S., Held, M. & Schmitt, S. High-throughput optimization of recombinant protein production in microfluidic gel beads. Small 17, 2005523 (2021).
-
Ochoa, A., Gastélum, G., Rocha, J. & Olguin, L. F. High-throughput bacterial co-encapsulation in microfluidic gel beads for discovery of antibiotic-producing strains. Analyst 148, 5762–5774 (2023).
-
Chen, J. et al. Single cell microgels for high-throughput magnetic sorting and sequencing of antigen-specific antibodies. Adv. Funct. Mater. 34, 2314560 (2024).
-
Nakagawa, Y. et al. Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. Lab Chip 21, 3793–3803 (2021).
-
Liu, L., Dalal, C. K., Heineike, B. M. & Abate, A. R. High throughput gene expression profiling of yeast colonies with microgel-culture Drop-seq. Lab Chip 19, 1838–1849 (2019).
-
Adu-Berchie, K. et al. Generation of functionally distinct T-cell populations by altering the viscoelasticity of their extracellular matrix. Nat. Biomed. Eng. 7, 1374–1391 (2023).
-
Mittelheisser, V. et al. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. Nat. Nanotechnol. 19, 281–297 (2024).
-
Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).
-
Kim, S.-J., Kim, E. M., Yamamoto, M., Park, H. & Shin, H. Engineering multi-cellular spheroids for tissue engineering and regenerative medicine. Adv. Healthc. Mater. 9, 2000608 (2020).
-
Sart, S., Ronteix, G., Jain, S., Amselem, G. & Baroud, C. N. Cell culture in microfluidic droplets. Chem. Rev. 122, 7061–7096 (2022).
-
Tevis, K. M., Colson, Y. L. & Grinstaff, M. W. Embedded spheroids as models of the cancer microenvironment. Adv. Biosyst. 1, 1700083 (2017).
-
Toda, S., Blauch, L. R., Tang, S. K., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science 361, 156–162 (2018).
-
Baker, B. M. & Chen, C. S. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012). This review provides a mechanistic and comprehensive introduction to the fundamentals of 3D cell culture.
-
Raghavan, S. et al. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis. J. Cell Sci. 123, 2877–2883 (2010).
-
Wang, H. et al. Bioinspired one cell culture isolates highly tumorigenic and metastatic cancer stem cells capable of multilineage differentiation. Adv. Sci. 7, 2000259 (2020).
-
Fang, G. et al. Mammary tumor organoid culture in non-adhesive alginate for luminal mechanics and high-throughput drug screening. Adv. Sci. 8, 2102418 (2021).
-
Özkale, B. et al. Actuated 3D microgels for single cell mechanobiology. Lab Chip 22, 1962–1970 (2022).
-
Zhu, H. et al. Core–shell spheroid-laden microgels crosslinked under biocompatible conditions for probing cancer–stromal communication. Adv. NanoBiomed Res. 2, 2200138 (2022).
-
Kamperman, T. et al. Steering stem cell fate within 3D living composite tissues using stimuli-responsive cell-adhesive micromaterials. Adv. Sci. 10, 2205487 (2023).
-
Kohler, T. N. et al. Plakoglobin is a mechanoresponsive regulator of naive pluripotency. Nat. Commun. 14, 4022 (2023).
-
Cordero-Espinoza, L. et al. Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation. Cell Stem Cell 28, 1907–1921 (2021).
-
Schindler, M. et al. Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells. Stem Cell Rep. 16, 1347–1362 (2021).
-
Munger, C. et al. Microgel culture and spatial identity mapping elucidate the signalling requirements for primate epiblast and amnion formation. Development 149, dev200263 (2022).
-
Lee, D. & Cha, C. Cell subtype-dependent formation of breast tumor spheroids and their variable responses to chemotherapeutics within microfluidics-generated 3D microgels with tunable mechanics. Mater. Sci. Engineering C. 112, 110932 (2020).
-
Saupe, M. et al. Droplet-based cell viability assay for analysis of spheroid formation, proliferation and high-resolution IC50 profiling. Lab Chip 25, 6138–6156 (2025).
-
Sabhachandani, P. et al. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. J. Controlled Rel. 295, 21–30 (2019).
-
Ronteix, G. et al. High resolution microfluidic assay and probabilistic modeling reveal cooperation between T cells in tumor killing. Nat. Commun. 13, 3111 (2022).
-
Sun, Q. et al. Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing. ACS Biomater. Sci. Eng. 4, 4425–4433 (2018).
-
Araújo-Gomes, N. et al. Microfluidic generation of thin-shelled polyethylene glycol-tyramine microgels for non-invasive delivery of immunoprotected β-cells. Adv. Healthc. Mater. 13, 2301552 (2024).
-
van Loo, B., Schot, M., Gurian, M., Kamperman, T. & Leijten, J. Single-step biofabrication of in situ spheroid-forming compartmentalized hydrogel for clinical-sized cartilage tissue formation. Adv. Healthc. Mater. 13, 2300095 (2024).
-
Liu, H. et al. A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Adv. Sci. 7, 1903739 (2020).
-
Song, T., Zhang, H., Luo, Z., Shang, L. & Zhao, Y. Primary human pancreatic cancer cells cultivation in microfluidic hydrogel microcapsules for drug evaluation. Adv. Sci. 10, 2206004 (2023).
-
Sart, S., Tomasi, R. F.-X., Amselem, G. & Baroud, C. N. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nat. Commun. 8, 469 (2017).
-
Mulas, C. et al. Microfluidic platform for 3D cell culture with live imaging and clone retrieval. Lab Chip 20, 2580–2591 (2020).
-
de Hoyos-Vega, J. M. et al. Microfluidic 3D hepatic cultures integrated with a droplet-based bioanalysis unit. Biosens. Bioelectron. 248, 115896 (2024).
-
Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).
-
Tomasi, R. F.-X., Sart, S., Champetier, T. & Baroud, C. N. Individual control and quantification of 3D spheroids in a high-density microfluidic droplet array. Cell Rep. 31, 107670 (2020).
-
Saint-Sardos, A. et al. High-throughput measurements of intra-cellular and secreted cytokine from single spheroids using anchored microfluidic droplets. Small 16, 2002303 (2020).
-
Bonnet, V. et al. Cancer-on-a-chip model shows that the adenomatous polyposis coli mutation impairs T cell engagement and killing of cancer spheroids. Proc. Natl Acad. Sci. USA 121, e2316500121 (2024).
-
Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. 22, 818–831 (2023).
-
Xu, S. et al. Stimuli-responsive hydrogels composed of modified cellulose nanocrystal and gelatin with oriented channels for guiding axonal myelination. Carbohydr. Polym. 356, 123402 (2025).
-
Harimoto, T., Jung, W.-H. & Mooney, D. J. Delivering living medicines with biomaterials. Nat. Rev. Mater. 10, 191–210 (2025).
-
Toprakcioglu, Z., Challa, P. K., Morse, D. B. & Knowles, T. Attoliter protein nanogels from droplet nanofluidics for intracellular delivery. Sci. Adv. 6, eaay7952 (2020).
-
Saucedo-Espinosa, M. A., Breitfeld, M. & Dittrich, P. S. Continuous electroformation of gold nanoparticles in nanoliter droplet reactors. Angew. Chem. Int. Ed. 62, e202212459 (2023).
-
Zhang, Q. et al. Formation of protein nanoparticles in microdroplet flow reactors. ACS nano 17, 11335–11344 (2023).
-
Headen, D. M. et al. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat. Mater. 17, 732–739 (2018).
-
Lei, J. et al. FasL microgels induce immune acceptance of islet allografts in nonhuman primates. Sci. Adv. 8, eabm9881 (2022).
-
Pan, S. et al. Multifunctional injectable hydrogel microparticles loaded with miR-29a abundant BMSCs derived exosomes enhanced bone regeneration by regulating osteogenesis and angiogenesis. Small 20, 2306721 (2024).
-
Yin, Z. et al. Injectable hyperbranched PEG crosslinked hyaluronan hydrogel microparticles containing mir-99a-3p modified subcutaneous ADSCs-derived exosomes was beneficial for long-term treatment of osteoarthritis. Mater. Today Bio 23, 100813 (2023).
-
Sun, J. et al. Mesenchymal stem cell-laden composite β cell porous microgel for diabetes treatment. Adv. Funct. Mater. 33, 2211897 (2023).
-
Yang, C. et al. Adhesive composite microspheres with dual antibacterial strategies for infected wound healing. Small 19, 2301092 (2023).
-
Johnbosco, C. et al. Microencapsulated stem cells reduce cartilage damage in a material dependent manner following minimally invasive intra-articular injection in an OA rat model. Mater. Today Bio 22, 100791 (2023).
-
Fang, Z., Yang, X. & Shang, L. Microfluidic-derived montmorillonite composite microparticles for oral codelivery of probiotic biofilm and postbiotics. Sci. Adv. 11, eadt2131 (2025).
-
Wang, R. et al. Poly-γ-glutamic acid microgel-encapsulated probiotics with gastric acid resistance and smart inflammatory factor targeted delivery performance to ameliorate colitis. Adv. Funct. Mater. 32, 2113034 (2022).
-
Chen, X. et al. Suspended bubble microcapsule delivery systems from droplet microfluidic technology for the local treatment of gastric cancer. Chem. Eng. J. 458, 141428 (2023).
-
Lin, X. et al. Light-activated extracellular matrix microcarriers with engineered MSCs loading for autoimmune psoriasis treatment. Chem. Eng. J. 470, 144118 (2023).
-
Griffin, D. R. et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021).
-
Cha, C. et al. Microfluidics-assisted fabrication of gelatin-silica core–shell microgels for injectable tissue constructs. Biomacromolecules 15, 283–290 (2014).
-
Yang, C., Ding, X., Yang, C., Shang, L. & Zhao, Y. Marine polymers-alginate/chitosan composited microcapsules for wound healing. Chem. Eng. J. 456, 140886 (2023).
-
Yang, L., Yang, W., Xu, W., Zhao, Y. & Shang, L. Bio-inspired Janus microcarriers with sequential actives release for bone regeneration. Chem. Eng. J. 476, 146797 (2023).
-
Darling, N. J., Sideris, E., Hamada, N., Carmichael, S. T. & Segura, T. Injectable and spatially patterned microporous annealed particle (MAP) hydrogels for tissue repair applications. Adv. Sci. 5, 1801046 (2018).
-
Wilson, K. L. et al. SDF-1 bound heparin nanoparticles recruit progenitor cells for their differentiation and promotion of angiogenesis after stroke. Adv. Healthc. Mater. 13, 2302081 (2024).
-
Fang, J. et al. Injectable drug-releasing microporous annealed particle scaffolds for treating myocardial infarction. Adv. Funct. Mater. 30, 2004307 (2020).
-
Caprio, N. D., Davidson, M. D., Daly, A. C. & Burdick, J. A. Injectable MSC spheroid and microgel granular composites for engineering tissue. Adv. Mater. 36, 2312226 (2024).
-
Kent, R. N. III et al. Physical and soluble cues enhance tendon progenitor cell invasion into injectable synthetic hydrogels. Adv. Funct. Mater. 32, 2207556 (2022).
-
Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).
-
An, C. et al. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration. Acta Biomaterialia 157, 91–107 (2023).
-
Feng, Q. et al. Injection and self-assembly of bioinspired stem cell-laden gelatin/hyaluronic acid hybrid microgels promote cartilage repair in vivo. Adv. Funct. Mater. 29, 1906690 (2019).
-
Li, F. et al. Microencapsulation improves chondrogenesis in vitro and cartilaginous matrix stability in vivo compared to bulk encapsulation. Biomater. Sci. 8, 1711–1725 (2020).
-
Wong, S. W. et al. Inhibition of aberrant tissue remodelling by mesenchymal stromal cells singly coated with soft gels presenting defined chemomechanical cues. Nat. Biomed. Eng. 6, 54–66 (2022).
-
Liu, A. J. & Nagel, S. R. Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (CRC Press, 2001).
-
Menut, P., Seiffert, S., Sprakel, J. & Weitz, D. A. Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter 8, 156–164 (2012).
-
Emiroglu, D. B. et al. Building block properties govern granular hydrogel mechanics through contact deformations. Sci. Adv. 8, eadd8570 (2022).
-
James, N. M., Han, E., de la Cruz, R. A. L., Jureller, J. & Jaeger, H. M. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 17, 965–970 (2018).
-
Richards, J. A., O’Neill, R. E. & Poon, W. C. Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction. Rheologica Acta 60, 97–106 (2021).
-
Riley, L., Schirmer, L. & Segura, T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr. Opin. Biotechnol. 60, 1–8 (2019).
-
Lee, H.-P. et al. Dynamically cross-linked granular hydrogels for 3D printing and therapeutic delivery. ACS Appl. Bio Mater. 6, 3683–3695 (2023).
-
Muir, V. G. et al. Sticking together: injectable granular hydrogels with increased functionality via dynamic covalent inter-particle crosslinking. Small 18, 2201115 (2022).
-
Mealy, J. E. et al. Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv. Mater. 30, 1705912 (2018).
-
Xin, S., Dai, J., Gregory, C. A., Han, A. & Alge, D. L. Creating physicochemical gradients in modular microporous annealed particle hydrogels via a microfluidic method. Adv. Funct. Mater. 30, 1907102 (2020).
-
Tigner, T. J. et al. Clickable granular hydrogel scaffolds for delivery of neural progenitor cells to sites of spinal cord injury. Adv. Healthc. Mater. 13, 2303912 (2024).
-
Kuang, G., Zhang, Q., Li, W. & Zhao, Y. Biomimetic tertiary lymphoid structures with microporous annealed particle scaffolds for cancer postoperative therapy. ACS Nano 18, 9176–9186 (2024).
-
Li, F. et al. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomaterialia 77, 48–62 (2018).
-
Zhang, J. et al. Transforming cell–drug interaction through granular hydrogel-mediated delivery of polyplex nanoparticles for enhanced safety and extended efficacy in gene therapy. ACS Appl. Mater. Interfaces 16, 39784–39795 (2024).
-
Wu, G. et al. Improving liposome delivery with macroporous granular hydrogels synthesized through freezing-facilitated secondary crosslinking of macromonomers. Adv. Mater. Interfaces 10, 2300262 (2023).
-
Truong, N. F. et al. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomaterialia 94, 160–172 (2019).
-
Karimi, F. et al. Photocrosslinked silk fibroin microgel scaffolds for biomedical applications. Adv. Funct. Mater. 34, 2313354 (2024).
-
Jaberi, A. et al. Engineering microgel packing to tailor the physical and biological properties of gelatin methacryloyl granular hydrogel scaffolds. Adv. Healthc. Mater. 13, 2402489 (2024).
-
Lowen, J. M. et al. Multisized photoannealable microgels regulate cell spreading, aggregation, and macrophage phenotype through microporous void space. Adv. Healthc. Mater. 12, 2202239 (2023).
-
Nerger, B. A. et al. Tuning porosity of macroporous hydrogels enables rapid rates of stress relaxation and promotes cell expansion and migration. Proc. Natl Acad. Sci. USA 121, e2410806121 (2024). This work highlights that stress relaxation of jammed microgels is tunable by packing density, and it affects cell behaviours in vitro.
-
Krattiger, L. A. et al. Microfluidic platforms to screen granular hydrogel microenvironments for tissue regeneration. Adv. Funct. Mater. 34, 2310507 (2024).
-
Ross, B. C. et al. Building-block size mediates microporous annealed particle hydrogel tube microenvironment following spinal cord injury. Adv. Healthc. Mater. 13, 2302498 (2024).
-
Tanner, G. I., Schiltz, L., Narra, N., Figueiredo, M. L. & Qazi, T. H. Granular hydrogels improve myogenic invasion and repair after volumetric muscle loss. Adv. Healthc. Mater. 13, 2303576 (2024).
-
Pfaff, B. N., Flanagan, C. C. & Griffin, D. R. Microporous annealed particle (MAP) scaffold pore size influences mesenchymal stem cell metabolism and proliferation without changing CD73, CD90, and CD105 expression over two weeks. Adv. Biol. 8, 2300482 (2024).
-
Casella, A. et al. Conductive microgel annealed scaffolds enhance myogenic potential of myoblastic cells. Adv. Healthc. Mater. 13, 2302500 (2024).
-
Ataie, Z. et al. Accelerating patterned vascularization using granular hydrogel scaffolds and surgical micropuncture. Small 20, 2307928 (2024).
-
Schot, M. et al. Photoannealing of microtissues creates high-density capillary network containing living matter in a volumetric-independent manner. Adv. Mater. 36, 2308949 (2024).
-
Liu, Y. et al. Exploring the role of spatial confinement in immune cell recruitment and regeneration of skin wounds. Adv. Mater. 35, 2304049 (2023).
-
Liu, Y. et al. Spatial confinement modulates macrophage response in microporous annealed particle (MAP) scaffolds. Adv. Healthc. Mater. 12, 2300823 (2023).
-
Qazi, T. H. et al. Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Adv. Mater. 34, 2109194 (2022).
-
Tang, R.-C., Shang, L., Scumpia, P. O. & Di Carlo, D. Injectable microporous annealed crescent-shaped (MAC) particle hydrogel scaffold for enhanced cell infiltration. Adv. Healthc. Mater. 13, 2302477 (2024).
-
Daly, A. C., Prendergast, M. E., Hughes, A. J. & Burdick, J. A. Bioprinting for the biologist. Cell 184, 18–32 (2021).
-
He, F. et al. 3D Printed biocatalytic living materials with dual-network reinforced bioinks. Small 18, 2104820 (2022).
-
Xin, S. et al. Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting. Sci. Adv. 7, eabk3087 (2021).
-
He, Y. et al. Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016).
-
Xin, S., Chimene, D., Garza, J. E., Gaharwar, A. K. & Alge, D. L. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomater. Sci. 7, 1179–1187 (2019).
-
Zhang, J. et al. Injectable granular hydrogels as colloidal assembly microreactors for customized structural colored objects. Angew. Chem. 134, e202206339 (2022).
-
Charlet, A., Bono, F. & Amstad, E. Mechanical reinforcement of granular hydrogels. Chem. Sci. 13, 3082–3093 (2022).
-
Li, Y. et al. Biocatalytic living materials built by compartmentalized microorganisms in annealable granular hydrogels. Chem. Eng. J. 445, 136822 (2022).
-
Miksch, C. E. et al. 4D printing of extrudable and degradable poly (ethylene glycol) microgel scaffolds for multidimensional cell culture. Small 18, 2200951 (2022).
-
Deo, K. A. et al. Granular biphasic colloidal hydrogels for 3D bioprinting. Adv. Healthc. Mater. 13, 2303810 (2024).
-
Wang, Y. et al. Advancing engineered plant living materials through tobacco BY-2 cell growth and transfection within tailored granular hydrogel scaffolds. ACS Cent. Sci. 10, 1094–1104 (2024).
-
Seymour, A. J., Shin, S. & Heilshorn, S. C. 3D printing of microgel scaffolds with tunable void fraction to promote cell infiltration. Adv. Healthc. Mater. 10, 2100644 (2021).
-
Zhang, H. et al. Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth. Adv. Funct. Mater. 30, 1910573 (2020).
-
Seymour, A. J., Kilian, D., Navarro, R. S., Hull, S. M. & Heilshorn, S. C. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels. Biomater. Sci. 11, 7598–7615 (2023).
-
Cao, Y. et al. Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration. Nat. Commun. 13, 7463 (2022).
-
Zhang, Y., Tan, C. M., Toepfer, C. N., Lu, X. & Bayley, H. Microscale droplet assembly enables biocompatible multifunctional modular iontronics. Science 386, 1024–1030 (2024).
-
Li, X. et al. Inkjet bioprinting of biomaterials. Chem. Rev. 120, 10793–10833 (2020).
-
Kim, H. H. et al. Parallelization of microfluidic droplet junctions for ultraviscous fluids. Small 18, 2205001 (2022).
-
van Loo, B. et al. Mass production of uminogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat. Commun. 14, 6685 (2023).
-
Song, Y., Sauret, A. & Shum, H. C. All-aqueous multiphase microfluidics. Biomicrofluidics 7, 61301 (2013).
-
Wyss, H. M., Franke, T., Mele, E. & Weitz, D. A. Capillary micromechanics: measuring the elasticity of microscopic soft objects. Soft Matter 6, 4550–4555 (2010).
-
Xu, Y. et al. Micromechanics of soft materials using microfluidics. MRS Bull. 47, 119–126 (2022).
-
Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem. Soc. Rev. 49, 5850–5884 (2020).
-
Squires, T. M. & Mason, T. G. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413–438 (2010).
-
Yao, A., Tassieri, M., Padgett, M. & Cooper, J. Microrheology with optical tweezers. Lab Chip 9, 2568–2575 (2009).
-
Nakajima, K. et al. Mechanical profiling of biopolymer condensates through acoustic trapping. Preprint at bioRxiv https://doi.org/10.1101/2024.09.16.613217 (2024).
-
Gerum, R. et al. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. eLife 11, e78823 (2022).
-
Allazetta, S., Negro, A. & Lutolf, M. Microfluidic programming of compositional hydrogel landscapes. Macromol. Rapid Commun. 38, 1700255 (2017).
-
Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).
-
Meng, Z., Yan, H. & Wang, Y. Granular metamaterials with dynamic bond reconfiguration. Sci. Adv. 10, eadq7933 (2024).
-
Shen, X. et al. Achieving adjustable elasticity with non-affine to affine transition. Nat. Mater. 20, 1635–1642 (2021).
-
Djellouli, A. et al. Shell buckling for programmable metafluids. Nature 628, 545–550 (2024).
-
Riley, L., Cheng, P. & Segura, T. Identification and analysis of 3D pores in packed particulate materials. Nat. Computational Sci. 3, 975–992 (2023).
-
Cubuk, E. D. et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017). This work demonstrates a machine learning approach to study granular materials and uncovers striking similarity among a wide range of disordered solid systems.
-
Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).
-
Blatchley, M. R. & Anseth, K. S. Middle-out methods for spatiotemporal tissue engineering of organoids. Nat. Rev. Bioeng. 1, 329–345 (2023).
-
Huang, M. S., Christakopoulos, F., Roth, J. G. & Heilshorn, S. C. Organoid bioprinting: from cells to functional tissues. Nat. Rev. Bioeng. 3, 126–142 (2025).
-
Ho, D. L. et al. Large-scale production of wholly cellular bioinks via the optimization of human induced pluripotent stem cell aggregate culture in automated bioreactors. Adv. Healthc. Mater. 11, 2201138 (2022).
-
Daly, A. C., Davidson, M. D. & Burdick, J. A. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat. Commun. 12, 753 (2021).
-
Fang, Y. et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv. Mater. 35, 2205082 (2023).
-
Marcotulli, M. et al. Microfluidic 3D printing of emulsion ink for engineering porous functionally graded materials. Adv. Mater. Technol. 8, 2201244 (2023).
-
Hull, S. M. et al. 3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators. Sci. Adv. 9, eade7880 (2023).
-
Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. et al. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).
-
Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019). A pioneering work using organoids as a printing bath to construct tissue-level cell density in biofabricated structures.
-
You, S. et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9, eade7923 (2023).
