References
-
Vaughn, V. M., Dickson, R. P., Horowitz, J. K. & Flanders, S. A. Community-acquired pneumonia: a review. JAMA 332, 1282–1295 (2024).
-
Powers, J. G., Higham, C., Broussard, K. & Phillips, T. J. Wound healing and treating wounds: chronic wound care and management. J. Am. Acad. Dermatol. 74, 607–625 (2016).
-
Martin-Loeches, I., Singer, M. & Leone, M. Sepsis: key insights, future directions, and immediate goals. A review and expert opinion. Intensive Care Med. 50, 2043–2049 (2024).
-
Hasbun, R. Progress and challenges in bacterial meningitis: a review. JAMA 328, 2147–2154 (2022).
-
Letizia, M., Diggle, S. P. & Whiteley, M. Pseudomonas aeruginosa: ecology, evolution, pathogenesis and antimicrobial susceptibility. Nat. Rev. Microbiol. 23, 701–717 (2025).
-
Mall, M. A. et al. Cystic fibrosis. Nat. Rev. Dis. Primers 10, 54 (2024).
-
Duan, S. et al. An all-in-one nano-biomimetic polyamidoamine dendrimer platform for treatment of CRKP pneumonia. Adv. Funct. Mater. 34, 2401549 (2024).
-
Miller, W. R. & Arias, C. A. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 22, 598–616 (2024).
-
Botelho, J., Grosso, F. & Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa–mechanisms, epidemiology and evolution. Drug Resist. Updates 44, 100640 (2019).
-
Lewis, K. et al. Sophisticated natural products as antibiotics. Nature 632, 39–49 (2024).
-
Pontes, M. H. & Groisman, E. A. A physiological basis for nonheritable antibiotic resistance. mBio 11, 00817–00820 (2020).
-
Pu, Y. et al. ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol. Cell 73, 143–156 (2019).
-
Li, B. et al. Bioenergetic stress potentiates antimicrobial resistance and persistence. Nat. Commun. 16, 5111 (2025).
-
Yang, J., Li, K., Li, C. & Gu, J. Intrinsic apyrase-like activity of cerium-based metal–organic frameworks (MOFs): dephosphorylation of adenosine tri- and diphosphate. Angew. Chem. Int. Ed. 59, 22952–22956 (2020).
-
Yang, H., Lin, P., Zhang, B., Li, F. & Ling, D. A nucleophilicity-engineered DNA ligation blockade nanoradiosensitizer induces irreversible DNA damage to overcome cancer radioresistance. Adv. Mater. 36, 2410031 (2024).
-
Makvandi, P. et al. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 30, 1910021 (2020).
-
Wei, X. et al. Supercharged precision killers: genetically engineered biomimetic drugs of screened metalloantibiotics against Acinetobacter baumanni. Sci. Adv. 10, eadk6331 (2024).
-
Xia, Y. et al. Bismuth-based drugs sensitize Pseudomonas aeruginosa to multiple antibiotics by disrupting iron homeostasis. Nat. Microbiol. 9, 2600–2613 (2024).
-
Wang, R. et al. Orally administered bismuth drug together with N-acetyl cysteine as a broad-spectrum anti-coronavirus cocktail therapy. Chem. Sci. 13, 2238–2248 (2022).
-
Li, X., Yamazaki, T., Ebara, M., Shirahata, N. & Hanagata, N. Nanoengineered coordination polymers boost cancer immunotherapy. Mater. Today 67, 127–150 (2023).
-
Zhang, L. et al. Gambogic acid based coordination polymer reinforces high-intensity focused ultrasound treatment of gynecologic malignancies. Adv. Mater. 37, 2501664 (2025).
-
Wang, J.-L. et al. Room-temperature preparation of coordination polymers for biomedicine. Coord. Chem. Rev. 411, 213256 (2020).
-
Xu, W. et al. Assembly and biological functions of metal-biomolecule network nanoparticles formed by metal-phosphonate coordination. Sci. Adv. 10, eads9542 (2024).
-
Wong, K.-Y., Nie, Z., Wong, M.-S., Wang, Y. & Liu, J. Metal–drug coordination nanoparticles and hydrogels for enhanced delivery. Adv. Mater. 36, 2404053 (2024).
-
Suárez-García, S. et al. Antitumour activity of coordination polymer nanoparticles. Coord. Chem. Rev. 441, 213977 (2021).
-
Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014).
-
Qiao, Z. et al. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat. Commun. 13, 7164 (2022).
-
Yang, J. et al. Gallium–carbenicillin framework coated defect-rich hollow TiO2 as a photocatalyzed oxidative stress amplifier against complex infections. Adv. Funct. Mater. 30, 2004861 (2020).
-
He, M. et al. Sonoinduced tumor therapy and metastasis inhibition by a ruthenium complex with dual action: superoxide anion sensitization and ligand fracture. J. Am. Chem. Soc. 146, 25764–25779 (2024).
-
Fang, F. et al. Continuous spatiotemporal therapy of a full-API nanodrug via multi-step tandem endogenous biosynthesis. Nat. Commun. 14, 1660 (2023).
-
Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J. & Blaskovich, M. A. T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 7, 202–224 (2023).
-
Wang, C. et al. Metal-based approaches for the fight against antimicrobial resistance: mechanisms, opportunities, and challenges. J. Am. Chem. Soc. 147, 12361–12380 (2025).
-
Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F. & Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 23, 15779 (2022).
-
Henderson, P. J. F. et al. Physiological functions of bacterial “multidrug” efflux pumps. Chem. Rev. 121, 5417–5478 (2021).
-
Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2023).
-
Yang, B., Tong, Z., Shi, J., Wang, Z. & Liu, Y. Bacterial proton motive force as an unprecedented target to control antimicrobial resistance. Med. Res. Rev. 43, 1068–1090 (2023).
-
Biquet-Bisquert, A. et al. Spatiotemporal dynamics of the proton motive force on single bacterial cells. Sci. Adv. 10, eadl5849 (2024).
-
Riquelme, S. A. et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab. 31, 1091–1106 (2020).
-
Schink, S. J. et al. Glycolysis/gluconeogenesis specialization in microbes is driven by biochemical constraints of flux sensing. Mol. Syst. Biol. 18, e10704 (2022).
-
Wang, X. et al. TPGS-based and S-thanatin functionalized nanorods for overcoming drug resistance in Klebsiella pneumonia. Nat. Commun. 13, 3731 (2022).
-
Liu, Y. et al. Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb. Pathog. 185, 106397 (2023).
-
Wu, J., Wang, C., Sun, J. & Xue, Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano 5, 4476–4489 (2011).
-
Qian, B., Jiang, R.-J., Song, J.-L. & Wang, C.-Q. Organophosphorus flame retardant TDCPP induces neurotoxicity via mitophagy-related ferroptosis in vivo and in vitro. Chemosphere 308, 136345 (2022).
-
Wang, Y. et al. Biomimetic electrodynamic metal-organic framework nanosponges for augmented treatment of biofilm infections. Adv. Sci. 11, 2408442 (2024).
-
Fang, J., Islam, W. & Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 157, 142–160 (2020).
-
Park, J. et al. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics 9, 8073–8090 (2019).
-
Wang, Y. et al. Honeysuckle-derived nanovesicles regulate gut microbiota for the treatment of inflammatory bowel disease. Adv. Sci. 12, e05208 (2025).
-
Yan, L. et al. Ginger exosome-like nanoparticle-derived miRNA therapeutics: a strategic inhibitor of intestinal inflammation. J. Adv. Res. 69, 1–15 (2025).
-
Hu, Q. et al. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil. Med. Res. 9, 61 (2022).
-
Teng, Y. et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 24, 637–652 (2018).
-
Teng, Y. et al. Plant-nanoparticles enhance anti-PD-L1 efficacy by shaping human commensal microbiota metabolites. Nat. Commun. 16, 1295 (2025).
-
Teng, Y. et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol. Ther. 29, 2424–2440 (2021).
-
Xu, X.-H. et al. Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 21, 8151–8159 (2021).
-
Ghosh, S. et al. A potent antibiotic-loaded bone-cement implant against staphylococcal bone infections. Nat. Biomed. Eng. 6, 1180–1195 (2022).
-
Mazzolini, R. et al. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat. Biotechnol. 41, 1089–1098 (2023).
