Biomimetic metal-drug coordination nanoplatform to counteract drug resistance in Pseudomonas aeruginosa via energy disruption

biomimetic-metal-drug-coordination-nanoplatform-to-counteract-drug-resistance-in-pseudomonas-aeruginosa-via-energy-disruption
Biomimetic metal-drug coordination nanoplatform to counteract drug resistance in Pseudomonas aeruginosa via energy disruption

References

  1. Vaughn, V. M., Dickson, R. P., Horowitz, J. K. & Flanders, S. A. Community-acquired pneumonia: a review. JAMA 332, 1282–1295 (2024).

    Google Scholar 

  2. Powers, J. G., Higham, C., Broussard, K. & Phillips, T. J. Wound healing and treating wounds: chronic wound care and management. J. Am. Acad. Dermatol. 74, 607–625 (2016).

    Google Scholar 

  3. Martin-Loeches, I., Singer, M. & Leone, M. Sepsis: key insights, future directions, and immediate goals. A review and expert opinion. Intensive Care Med. 50, 2043–2049 (2024).

    Google Scholar 

  4. Hasbun, R. Progress and challenges in bacterial meningitis: a review. JAMA 328, 2147–2154 (2022).

    Google Scholar 

  5. Letizia, M., Diggle, S. P. & Whiteley, M. Pseudomonas aeruginosa: ecology, evolution, pathogenesis and antimicrobial susceptibility. Nat. Rev. Microbiol. 23, 701–717 (2025).

    Google Scholar 

  6. Mall, M. A. et al. Cystic fibrosis. Nat. Rev. Dis. Primers 10, 54 (2024).

  7. Duan, S. et al. An all-in-one nano-biomimetic polyamidoamine dendrimer platform for treatment of CRKP pneumonia. Adv. Funct. Mater. 34, 2401549 (2024).

    Google Scholar 

  8. Miller, W. R. & Arias, C. A. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 22, 598–616 (2024).

    Google Scholar 

  9. Botelho, J., Grosso, F. & Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa–mechanisms, epidemiology and evolution. Drug Resist. Updates 44, 100640 (2019).

    Google Scholar 

  10. Lewis, K. et al. Sophisticated natural products as antibiotics. Nature 632, 39–49 (2024).

    Google Scholar 

  11. Pontes, M. H. & Groisman, E. A. A physiological basis for nonheritable antibiotic resistance. mBio 11, 00817–00820 (2020).

    Google Scholar 

  12. Pu, Y. et al. ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol. Cell 73, 143–156 (2019).

    Google Scholar 

  13. Li, B. et al. Bioenergetic stress potentiates antimicrobial resistance and persistence. Nat. Commun. 16, 5111 (2025).

    Google Scholar 

  14. Yang, J., Li, K., Li, C. & Gu, J. Intrinsic apyrase-like activity of cerium-based metal–organic frameworks (MOFs): dephosphorylation of adenosine tri- and diphosphate. Angew. Chem. Int. Ed. 59, 22952–22956 (2020).

    Google Scholar 

  15. Yang, H., Lin, P., Zhang, B., Li, F. & Ling, D. A nucleophilicity-engineered DNA ligation blockade nanoradiosensitizer induces irreversible DNA damage to overcome cancer radioresistance. Adv. Mater. 36, 2410031 (2024).

    Google Scholar 

  16. Makvandi, P. et al. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 30, 1910021 (2020).

    Google Scholar 

  17. Wei, X. et al. Supercharged precision killers: genetically engineered biomimetic drugs of screened metalloantibiotics against Acinetobacter baumanni. Sci. Adv. 10, eadk6331 (2024).

    Google Scholar 

  18. Xia, Y. et al. Bismuth-based drugs sensitize Pseudomonas aeruginosa to multiple antibiotics by disrupting iron homeostasis. Nat. Microbiol. 9, 2600–2613 (2024).

    Google Scholar 

  19. Wang, R. et al. Orally administered bismuth drug together with N-acetyl cysteine as a broad-spectrum anti-coronavirus cocktail therapy. Chem. Sci. 13, 2238–2248 (2022).

    Google Scholar 

  20. Li, X., Yamazaki, T., Ebara, M., Shirahata, N. & Hanagata, N. Nanoengineered coordination polymers boost cancer immunotherapy. Mater. Today 67, 127–150 (2023).

    Google Scholar 

  21. Zhang, L. et al. Gambogic acid based coordination polymer reinforces high-intensity focused ultrasound treatment of gynecologic malignancies. Adv. Mater. 37, 2501664 (2025).

    Google Scholar 

  22. Wang, J.-L. et al. Room-temperature preparation of coordination polymers for biomedicine. Coord. Chem. Rev. 411, 213256 (2020).

    Google Scholar 

  23. Xu, W. et al. Assembly and biological functions of metal-biomolecule network nanoparticles formed by metal-phosphonate coordination. Sci. Adv. 10, eads9542 (2024).

    Google Scholar 

  24. Wong, K.-Y., Nie, Z., Wong, M.-S., Wang, Y. & Liu, J. Metal–drug coordination nanoparticles and hydrogels for enhanced delivery. Adv. Mater. 36, 2404053 (2024).

    Google Scholar 

  25. Suárez-García, S. et al. Antitumour activity of coordination polymer nanoparticles. Coord. Chem. Rev. 441, 213977 (2021).

    Google Scholar 

  26. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014).

    Google Scholar 

  27. Qiao, Z. et al. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat. Commun. 13, 7164 (2022).

    Google Scholar 

  28. Yang, J. et al. Gallium–carbenicillin framework coated defect-rich hollow TiO2 as a photocatalyzed oxidative stress amplifier against complex infections. Adv. Funct. Mater. 30, 2004861 (2020).

    Google Scholar 

  29. He, M. et al. Sonoinduced tumor therapy and metastasis inhibition by a ruthenium complex with dual action: superoxide anion sensitization and ligand fracture. J. Am. Chem. Soc. 146, 25764–25779 (2024).

    Google Scholar 

  30. Fang, F. et al. Continuous spatiotemporal therapy of a full-API nanodrug via multi-step tandem endogenous biosynthesis. Nat. Commun. 14, 1660 (2023).

    Google Scholar 

  31. Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J. & Blaskovich, M. A. T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 7, 202–224 (2023).

    Google Scholar 

  32. Wang, C. et al. Metal-based approaches for the fight against antimicrobial resistance: mechanisms, opportunities, and challenges. J. Am. Chem. Soc. 147, 12361–12380 (2025).

    Google Scholar 

  33. Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F. & Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 23, 15779 (2022).

    Google Scholar 

  34. Henderson, P. J. F. et al. Physiological functions of bacterial “multidrug” efflux pumps. Chem. Rev. 121, 5417–5478 (2021).

    Google Scholar 

  35. Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2023).

    Google Scholar 

  36. Yang, B., Tong, Z., Shi, J., Wang, Z. & Liu, Y. Bacterial proton motive force as an unprecedented target to control antimicrobial resistance. Med. Res. Rev. 43, 1068–1090 (2023).

    Google Scholar 

  37. Biquet-Bisquert, A. et al. Spatiotemporal dynamics of the proton motive force on single bacterial cells. Sci. Adv. 10, eadl5849 (2024).

    Google Scholar 

  38. Riquelme, S. A. et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab. 31, 1091–1106 (2020).

    Google Scholar 

  39. Schink, S. J. et al. Glycolysis/gluconeogenesis specialization in microbes is driven by biochemical constraints of flux sensing. Mol. Syst. Biol. 18, e10704 (2022).

    Google Scholar 

  40. Wang, X. et al. TPGS-based and S-thanatin functionalized nanorods for overcoming drug resistance in Klebsiella pneumonia. Nat. Commun. 13, 3731 (2022).

    Google Scholar 

  41. Liu, Y. et al. Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb. Pathog. 185, 106397 (2023).

    Google Scholar 

  42. Wu, J., Wang, C., Sun, J. & Xue, Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano 5, 4476–4489 (2011).

    Google Scholar 

  43. Qian, B., Jiang, R.-J., Song, J.-L. & Wang, C.-Q. Organophosphorus flame retardant TDCPP induces neurotoxicity via mitophagy-related ferroptosis in vivo and in vitro. Chemosphere 308, 136345 (2022).

    Google Scholar 

  44. Wang, Y. et al. Biomimetic electrodynamic metal-organic framework nanosponges for augmented treatment of biofilm infections. Adv. Sci. 11, 2408442 (2024).

    Google Scholar 

  45. Fang, J., Islam, W. & Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 157, 142–160 (2020).

    Google Scholar 

  46. Park, J. et al. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics 9, 8073–8090 (2019).

    Google Scholar 

  47. Wang, Y. et al. Honeysuckle-derived nanovesicles regulate gut microbiota for the treatment of inflammatory bowel disease. Adv. Sci. 12, e05208 (2025).

  48. Yan, L. et al. Ginger exosome-like nanoparticle-derived miRNA therapeutics: a strategic inhibitor of intestinal inflammation. J. Adv. Res. 69, 1–15 (2025).

    Google Scholar 

  49. Hu, Q. et al. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil. Med. Res. 9, 61 (2022).

    Google Scholar 

  50. Teng, Y. et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 24, 637–652 (2018).

    Google Scholar 

  51. Teng, Y. et al. Plant-nanoparticles enhance anti-PD-L1 efficacy by shaping human commensal microbiota metabolites. Nat. Commun. 16, 1295 (2025).

    Google Scholar 

  52. Teng, Y. et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol. Ther. 29, 2424–2440 (2021).

    Google Scholar 

  53. Xu, X.-H. et al. Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 21, 8151–8159 (2021).

    Google Scholar 

  54. Ghosh, S. et al. A potent antibiotic-loaded bone-cement implant against staphylococcal bone infections. Nat. Biomed. Eng. 6, 1180–1195 (2022).

    Google Scholar 

  55. Mazzolini, R. et al. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat. Biotechnol. 41, 1089–1098 (2023).

    Google Scholar 

Download references