References
-
Siddiqi, K. S., Husen, A. & Rao, R. A. K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 16, 14. https://doi.org/10.1186/s12951-018-0334-5 (2018).
-
Choudhary, S. et al. Phyco-synthesis of silver nanoparticles by environmentally safe approach and their applications. Sci. Rep. 14, 9568. https://doi.org/10.1038/s41598-024-60195-3 (2024).
-
Rafique, M., Sadaf, I., Rafique, M. S. & Tahir, M. B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol. 45, 1272–1291. https://doi.org/10.1080/21691401.2016.1241792 (2016).
-
Nguyen, N. P. U., Dang, N. T., Doan, L. & Nguyen, T. T. H. Synthesis of silver nanoparticles: from conventional to ‘modern’ methods—a review. Processes. 11, 2617. https://doi.org/10.3390/pr11092617 (2023).
-
Duman, H. et al. Silver nanoparticles: a comprehensive review of synthesis methods and chemical and physical properties. Nanomaterials 14, 1527. https://doi.org/10.3390/nano14181527 (2024).
-
Dhaka, A., Mali, S. C., Sharma, S. & Trivedi, R. A review on biological synthesis of silver nanoparticles and their potential applications. Results Chem. 6, 101108. https://doi.org/10.1016/j.rechem.2023.101108 (2023).
-
Arshad, F. et al. Bioinspired and green synthesis of silver nanoparticles for medical applications: a green perspective. Appl. Biochem. Biotechnol. 196, 3636–3669. https://doi.org/10.1007/s12010-023-04719-z (2024).
-
El deeb, B. A., Faheem, G. G. & Bakhit, M. S. Biosynthesis of silver nanoparticles by Talaromyces funiculosus for therapeutic applications and safety evaluation. Sci. Rep. 15, 13750. https://doi.org/10.1038/s41598-025-95899-7 (2025).
-
Shaligram, N. S. et al. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process. Biochem. 44, 939–943. https://doi.org/10.1016/j.procbio.2009.04.009 (2009).
-
El deeb, B. A., Faheem, G. G. & Bakhit, M. S. Antimicrobial activities of biogenic silver nanoparticles synthesized by Curvularia spicifera. Sohag J. Sci. 10, 95–102. https://doi.org/10.21608/sjsci.2024.336812.1233 (2025).
-
Raghav, D., Jyoti, A., Siddiqui, A. J. & Saxena, J. Plant-associated endophytic fungi as potential bio‐factories for extracellular enzymes: progress, challenges and strain improvement with precision approaches. J. Appl. Microbiol. 133, 287–310. https://doi.org/10.1111/jam.15574 (2022).
-
Wijesekara, T. & Xu, B. Health-promoting effects of bioactive compounds from plant endophytic fungi. J. Fungi. 9, 997. https://doi.org/10.3390/jof9100997 (2023).
-
Usman, M. et al. Synergistic partnerships of endophytic fungi for bioactive compound production and biotic stress management in medicinal plants. Plant. Stress. 11, 100425. https://doi.org/10.1016/j.stress.2024.100425 (2024).
-
Kumar, A. S. et al. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 29, 439–445. https://doi.org/10.1007/s10529-006-9256-7 (2007).
-
Phanjom, P. & Ahmed, G. Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC 1846) and its characterizations. Nanosci. Nanotechnol. 5, 14–21. https://doi.org/10.5923/j.nn.20150501.03 (2015).
-
Mikhailova, E. O. Green silver nanoparticles: an antibacterial mechanism. Antibiotics 14, 5. https://doi.org/10.3390/antibiotics14010005 (2025).
-
Abdelmoneim, H. M., Taha, T. H., Elnouby, M. S. & AbuShady, H. M. Extracellular biosynthesis, OVAT/statistical optimization, and characterization of silver nanoparticles (AgNPs) using Leclercia adecarboxylata THHM and its antimicrobial activity. Microb. Cell. Fact. 21, 277. https://doi.org/10.1186/s12934-022-01998-9 (2022).
-
Jargeat, P. et al. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr. Genet. 43, 199–205. https://doi.org/10.1007/s00294-003-0387-2 (2003).
-
Khodashenas, B. Nitrate reductase enzyme in Escherichia coli and its relationship with the synthesis of silver nanoparticles. UCT J. Resea Scien Eng. Techno. 3, 26–32 (2015).
-
Gholami-Shabani, M. et al. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl. Biochem. Biotechnol. 172, 4084–4098. https://doi.org/10.1007/s12010-014-0809-2 (2014).
-
Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I. & Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 3, 8. https://doi.org/10.1186/1477-3155-3-8 (2005).
-
Thepbandit, W. et al. Bio-synthesis and characterization of silver nanoparticles from Trichoderma species against cassava root rot disease. Sci. Rep. 14, 12535. https://doi.org/10.1038/s41598-024-60903-z (2024).
-
Sidhu, A. K., Verma, N. & Kaushal, P. Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential. Front. Nanotechnol. 3, 801620. https://doi.org/10.3389/fnano.2021.801620 (2021).
-
Acharya, C. et al. Synthesis of metallic nanoparticles using biometabolites: mechanisms and applications. Biometals 38, 21–54. https://doi.org/10.1007/s10534-024-00642-w (2025).
-
Zaki, A. et al. Synthesis, purification and characterization of Plectonema derived AgNPs with elucidation of the role of protein in nanoparticle stabilization. RSC Adv. 12, 2497–2510. https://doi.org/10.1039/D1RA08396A (2022).
-
Wypij, M. et al. Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front. Microbiol. 12, 632505. https://doi.org/10.3389/fmicb.2021.632505 (2021).
-
Nobahar, A., Carlier, J. D., Miguel, M. G. & Costa, M. C. A review of plant metabolites with metal interaction capacity: a green approach for industrial applications. Biometals 34, 761–793. https://doi.org/10.1007/s10534-021-00315-y (2021).
-
Vanaja, M. et al. Fungal assisted intracellular and enzyme based synthesis of silver nanoparticles and its bactericidal efficiency. Inter Res. J. Pharm. Biosci. 2, 8–19 (2015).
-
Guilger-Casagrande, M. et al. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci. Rep. 9, 14351. https://doi.org/10.1038/s41598-019-50871-0 (2019).
-
Menichetti, A., Mavridi-Printezi, A., Mordini, D. & Montalti, M. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J. Funct. Biomater. 14, 244. https://doi.org/10.3390/jfb14050244 (2023).
-
Shumi, G. et al. Biosynthesis of silver nanoparticles functionalized with histidine and phenylalanine amino acids for potential antioxidant and antibacterial activities. ACS Omega. 8, 24371–24386. https://doi.org/10.1021/acsomega.3c01910 (2023).
-
Rogowska, A. et al. Silver nanoparticles functionalized with ampicillin. Electrophoresis 38, 2757–2764. https://doi.org/10.1002/elps.201700093 (2017).
-
Khairnar, S. V., Das, A., Oupický, D., Sadykov, M. & Romanova, S. Strategies to overcome antibiotic resistance: silver nanoparticles and vancomycin in pathogen eradication. RSC Pharm. 2, 455–479. https://doi.org/10.1039/D4PM00314D (2025).
-
Pammi, S. V. N. et al. Unlocking the synergistic potential of green metallic nanoparticles and antibiotics for antibacterial and wound healing activities. iScience. 28, 112518. https://doi.org/10.1016/j.isci.2025.112518 (2025).
-
Ghaffar, N. et al. Restoration of antibacterial activity of inactive antibiotics via combined treatment with AgNPs. ACS Omega. 9, 13621–13635. https://doi.org/10.1021/acsomega.3c07000 (2024).
-
Murei, A., Ayinde, W. B., Gitari, M. W. & Samie, A. Functionalization and antimicrobial evaluation of ampicillin, penicillin and vancomycin with Pyrenacantha grandiflora Baill and silver nanoparticles. Sci. Rep. 10, 11596. https://doi.org/10.1038/s41598-020-68290-x (2020).
-
Shungube, M. et al. Synthesis and biological evaluation of novel β-lactam-metallo β-lactamase inhibitors. RSC Adv. 13, 18991–19001. https://doi.org/10.1039/D3RA02490C (2023).
-
Le Terrier, C. et al. Relative inhibitory activities of the broad-spectrum β-lactamase inhibitor xeruborbactam in comparison with Taniborbactam against metallo-β-lactamases produced in Escherichia coli and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 68, e01570–e01523. https://doi.org/10.1128/aac.01570-23 (2024).
-
Mustapha, A. et al. Phytochemical composition, in silico molecular docking analysis and antibacterial activity of Lawsonia inermis Linn leaves extracts against extended spectrum beta-lactamases-producing strains of Klebsiella pneumoniae. BioMed 4, 277–292. https://doi.org/10.3390/biomed4030022 (2024).
-
Carcione, D., Siracusa, C., Sulejmani, A., Leoni, V. & Intra, J. Old and new beta-lactamase inhibitors: molecular structure, mechanism of action, and clinical use. Antibiotics 10, 995. https://doi.org/10.3390/antibiotics10080995 (2021).
-
Sharma, D. et al. Unveiling the nanoworld of antimicrobial resistance: integrating nature and nanotechnology. Front. Microbiol. 15, 1391345. https://doi.org/10.3389/fmicb.2024.1391345 (2025).
-
Herrera-Hidalgo, L. et al. Ampicillin and ceftriaxone solution stability at different temperatures in outpatient parenteral antimicrobial therapy. Antimicrob. Agents Chemother. 64, e00309–e00320. https://doi.org/10.1128/AAC.00309-20 (2020).
-
Tigabie, M. et al. Colonization with extended-spectrum β-lactamase and carbapenemase-producing enterobacterales in Ethiopia: a systematic review and meta-analysis. PLoS ONE. 20, e0316492. https://doi.org/10.1371/journal.pone.0316492 (2025).
-
Egorov, A. M., Ulyashova, M. M. & Rubtsova, M. Y. Inhibitors of β-lactamases. New life of β-lactam antibiotics. Biochem. Mosc. 85, 1292–1309. https://doi.org/10.1134/S0006297920110024 (2020).
-
Katsarou, A., Stathopoulos, P., Tzvetanova, I. D., Asimotou, C. M. & Falagas, M. E. β-lactam/β-lactamase inhibitor combination antibiotics under development. Pathogens 14, 168. https://doi.org/10.3390/pathogens14020168 (2025).
-
Elumalai, L. et al. Biosynthesis of actinobacterial mediated silver nanoparticle (AgNPs): therapeutic potential and in-silico docking analysis on targeted virulence receptor. J. Sol-Gel Sci. Technol. 111, 293–308. https://doi.org/10.1007/s10971-024-06441-6 (2024).
-
Ramezanpour, M. et al. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim. Biophys. Acta Biomembr. 1858, 1688–1709. https://doi.org/10.1016/j.bbamem.2016.02.028 (2016).
-
Aarón, R. H. et al. In Silico strategies for drug discovery: optimizing natural compounds from foods for therapeutic applications. Discov. Chem. 2, 133. https://doi.org/10.1007/s44371-025-00201-3 (2025).
-
Kleandrova, V. V., Cordeiro, M. N. D. & Speck-Planche, A. In silico approach for antibacterial discovery: PTML modeling of virtual multi-strain inhibitors against Staphylococcus aureus. Pharmaceuticals. 18, 196. https://doi.org/10.3390/ph18020196 (2025).
-
Jini, D., Sharmila, S., Anitha, A., Pandian, M. & Rajapaksha, R. M. H. In vitro and in Silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes. Sci. Rep. 12, 22109. https://doi.org/10.1038/s41598-022-24818-x (2022).
-
Ugbaja, S. C., Mushebenge, A. G. A., Kumalo, H., Ngcobo, M. & Gqaleni, N. Potential benefits of in silico methods: a promising alternative in natural compound’s drug discovery and repurposing for HBV therapy. Pharmaceuticals 18, 419. https://doi.org/10.3390/ph18030419 (2025).
-
Dalbanjan, N. P. et al. In-silico strategies in nano-drug design: bridging nanomaterials and pharmacological applications. Nano TransMed. 4, 100091. https://doi.org/10.1016/j.ntm.2025.100091 (2025).
-
Kar, P., Oriola, A. O. & Oyedeji, A. O. Molecular docking approach for biological interaction of green synthesized nanoparticles. Molecules 29, 2428. https://doi.org/10.3390/molecules29112428 (2024).
-
Chowdhury, S., Basu, A. & Kundu, S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res. Lett. 9, 365 (2014). http://www.nanoscalereslett.com/content/9/1/365
-
Jain, N., Bhargava, A., Majumdar, S., Tarafdar, J. C. & Panwar, J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3, 635–641. https://doi.org/10.1039/C0NR00656D (2011).
-
Zhao, L., Gong, K., Wang, Y. & Kong, S. Rapid and environment-friendly preparation of silver nanoparticles and their inhibition against phytopathogenic fungi. Micro Nano Lett. 16, 213–220. https://doi.org/10.1049/mna2.12027 (2021).
-
Sable, S. V., Kawade, S., Ranade, S. & Joshi, S. Bioreduction mechanism of silver nanoparticles. Mater. Sci. Eng. C. 107, 110299. https://doi.org/10.1016/j.msec.2019.110299 (2020).
-
Babu, P. J. et al. Advances in nano silver-based biomaterials and their biomedical applications. Eng. Regen. 5, 326–341. https://doi.org/10.1016/j.engreg.2024.07.001 (2024).
-
Saifuddin, N., Wong, C. W. & Yasumira, A. N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J. Chem. 6, 61–70. https://doi.org/10.1155/2009/734264 (2009).
-
Fernández, J. G. et al. Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process. Biochem. 51, 1306–1313. https://doi.org/10.1016/j.procbio.2016.05.021 (2016).
-
Hamedi, S., Ghaseminezhad, M., Shokrollahzadeh, S. & Shojaosadati, A. S. Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif. Cells Nanomed. Biotechnol. 45, 1588–1596. https://doi.org/10.1080/21691401.2016.1267011 (2017).
-
Vahabi, K., Mansoori, G. A. & Karimi, S. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J. 1, 65–79. https://doi.org/10.5640/insc.010165 (2011).
-
Zomorodian, K. et al. Biosynthesis and characterization of silver nanoparticles by Aspergillus species. Biomed. Res. Int. 5435397 https://doi.org/10.1155/2016/5435397 (2016). (2016).
-
Hemath Naveen, K. S., Kumar, G., Karthik, L. & Bhaskara Rao, K. V. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch. Appl. Sci. Res. 2, 161–167 (2010). https://sid.ir/paper/662104/en
-
El-Dein, M. M. N., Baka, Z. A., Abou-Dobara, M. I., El-Sayed, A. K. & El-Zahed, M. M. Extracellular biosynthesis, optimization, characterization and antimicrobial potential of Escherichia coli D8 silver nanoparticles. J. Microbiol. Biotechnol. Food Sci. 10, 648–656. https://doi.org/10.15414/jmbfs.2021.10.4.648-656 (2021).
-
Onyangore, H. D. M., Andala, D. & Ndangili, P. Synthesis and conjugation of silver nanoparticles with beta ampicillin (2) antibiotic. G S J. 10, 1623–1650 (2022).
-
Al-Ogaidi, I. A. Z. Detecting the antibacterial activity of green synthesized silver (Ag) nanoparticles functionalized with ampicillin (Amp). Baghdad Sci. J. 14, 117–125. https://doi.org/10.21123/bsj.2017.14.1.0117 (2017).
-
Hadi, A. A. et al. Synergistic antibacterial effect of Persicaria odorata synthesised silver nanoparticles with antibiotics on drug-resistant bacteria. Inorg Chem Commun. 159, 111725. https://doi.org/10.1016/j.inoche.2023.111725 (2024).
-
Adil, M. et al. Efficient green silver nanoparticles-antibiotic combinations against antibiotic-resistant bacteria. AMB Express. 13, 115. https://doi.org/10.1186/s13568-023-01619-7 (2023).
-
Ibraheem, D. R. et al. Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials 12, 2808. https://doi.org/10.3390/nano12162808 (2022).
-
Hasoon, B. A. et al. Silver nanoparticles conjugated amoxicillin: a promising nano-suspension for overcoming multidrug resistance bacteria and preservation of endotracheal tube. Inorg Chem Commun. 165, 112456. https://doi.org/10.1016/j.inoche.2024.112456 (2024).
-
Masri, A. et al. Silver nanoparticle conjugation-enhanced antibacterial efficacy of clinically approved drugs cephradine and vildagliptin. Antibiotics 7, 100. https://doi.org/10.3390/antibiotics7040100 (2018).
-
Hur, Y. E. et al. One-step functionalization of gold and silver nanoparticles by ampicillin. Mater. Lett. 129, 185–190. https://doi.org/10.1016/j.matlet.2014.05.032 (2014).
-
Khatoon, N., Alam, H., Khan, A., Raza, K. & Sardar, M. Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci. Rep. 9, 6848. https://doi.org/10.1038/s41598-019-43309-0 (2019).
-
Brown, A. N. et al. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 78, 2768–2774. https://doi.org/10.1128/AEM.06513-11 (2012).
-
Ribeiro, A. I., Dias, A. M. & Zille, A. Synergistic effects between metal nanoparticles and commercial antimicrobial agents: a review. ACS Appl Nano Mater. 5, 3030–3064. https://doi.org/10.1021/acsanm.1c03891 (2022).
-
Lopez-Carrizales, M. et al. In vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens. Antibiotics 7, 50. https://doi.org/10.3390/antibiotics7020050 (2018).
-
Buszewski, B., Rafiſska, K., Pomastowski, P., Walczak, J. & Rogowska, A. Novel aspects of silver nanoparticles functionalization. Colloids Surf. Physicochem Eng. Asp. 506, 170–178. https://doi.org/10.1016/j.colsurfa.2016.05.058 (2016).
-
Jalil, K. et al. Excellent antibacterial and anti-inflammatory efficacy of amoxicillin by AgNPs and their conjugates synthesized using Micromeria biflora crude flavonoid extracts. Heliyon 10, e36752. https://doi.org/10.1016/j.heliyon.2024.e36752 (2024).
-
Niu, L. et al. Silver nanoparticles derived from Streptomyces sp. YJD18 with multifunctional biomedical applications. Sci. Rep. 15, 18139. https://doi.org/10.1038/s41598-025-02925-9 (2025).
-
Rudrappa, M. et al. Myco-nanofabrication of silver nanoparticles by Penicillium brasilianum NP5 and their antimicrobial, photoprotective and anticancer effect on MDA-MB-231 breast cancer cell line. Antibiotics 12, 567. https://doi.org/10.3390/antibiotics12030567 (2023).
-
Raffanti, J. E. F. & King, J. C. Effect of pH on the stability of sodium ampicillin solutions. Am. J. Health-Syst Pharm. 31, 745–751. https://doi.org/10.1093/ajhp/31.8.745 (1974).
-
Mitchell, S. M., Ullman, J. L., Teel, A. L. & Watts, R. J. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: ampicillin, cefalotin and cefoxitin. Sci. Total Environ. 466–467, 547–555. https://doi.org/10.1016/j.scitotenv.2013.06.027 (2014).
-
Fernández-Rubio, B. et al. Stability of ampicillin plus ceftriaxone combined in elastomeric infusion devices for outpatient parenteral antimicrobial therapy. Antibiotics 12, 432. https://doi.org/10.3390/antibiotics12030432 (2023).
-
Zendegani, E. & Dolatabadi, S. The efficacy of imipenem conjugated with synthesized silver nanoparticles against Acinetobacter baumannii clinical isolates, Iran. Biol. Trace Elem. Res. 197, 330–340. https://doi.org/10.1007/s12011-019-01962-6 (2020).
-
Zimet, P. et al. Biogenic silver nanoparticles conjugated with nisin: improving the antimicrobial and antibiofilm properties of nanomaterials. Chemistry 3, 1271–1285. https://doi.org/10.3390/chemistry3040092 (2021).
-
Alfahad, M. A., Al-Hayanni, H. S. & Alnuaimi, M. T. Antibacterial activity of biologically synthesized silver nanoparticles using seeds extract of coated on Nigella sativa antibiotics against antibiotic-resistant Salmonella Typhi. Indian J. Ecol. 49, 396–402 (2022).
-
Shahbandeh, M. et al. Conjugation of Imipenem to silver nanoparticles for enhancement of its antibacterial activity against multidrug-resistant isolates of Pseudomonas aeruginosa. J. Biosci. 46, 26. https://doi.org/10.1007/s12038-021-00143-9 (2021).
-
Veerapandian, M., Lim, S. K., Nam, H. M., Kuppannan, G. & Yun, K. S. Glucosamine-functionalized silver glyconanoparticles: characterization and antibacterial activity. Anal. Bioanal Chem. 398, 867–876. https://doi.org/10.1007/s00216-010-3964-5 (2010).
-
Zharkova, M. S. et al. Silver nanoparticles functionalized with antimicrobial polypeptides: benefits and possible pitfalls of a novel antiinfective tool. Front. Microbiol. 12, 750556. https://doi.org/10.3389/fmicb.2021.750556 (2021).
-
Veerapandian, M. & Yun, K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl. Microbiol. Biotechnol. 90, 1655–1667. https://doi.org/10.1007/s00253-011-3291-6 (2011).
-
Joshi, T., Jinugu, E. M., Khristi, A., Thareja, P. & Bagchi, D. Non-toxic, printable starch hydrogel composite with surface functionalized silver nanoparticles having wide-spectrum antimicrobial property. BioNanoSci 14, 4442–4455. https://doi.org/10.1007/s12668-024-01491-0 (2024).
-
Zhang, T. et al. A novel tri-mode detection platform for ampicillin and drug resistance genes by CRISPR-driven luminescent nanozymes. J. Nanobiotechnol. 23, 346. https://doi.org/10.1186/s12951-025-03454-3 (2025).
-
Vassallo, A., Silletti, M. F., Faraone, I. & Milella, L. Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections. J. Nanomater. 2020, 6905631. https://doi.org/10.1155/2020/6905631 (2020).
-
Ahmed, V. et al. Functionalised iron nanoparticle–penicillin G conjugates: a novel strategy to combat the rapid emergence of β-lactamase resistance among infectious micro-organism. J. Exp. Nanosci. 10, 718–728. https://doi.org/10.1080/17458080.2014.881570 (2015).
-
Drawz, S. M. & Bonomo, R. A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23, 160–201. https://doi.org/10.1128/cmr.00037-09 (2010).
-
Therrien, C. & Levesque, R. C. Molecular basis of antibiotic resistance and β-lactamase inhibition by mechanism-based inactivators: perspectives and future directions. FEMS Microbiol. Rev. 24, 251–262. https://doi.org/10.1111/j.1574-6976.2000.tb00541.x (2000).
-
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. https://doi.org/10.1038/227680a0 (1970).
-
Munir, I. & Yesiloz, G. Novel size-tunable and straightforward ultra-small nanoparticle synthesis in a varying concentration range of glycerol as a green reducing solvent. Acs Omega. 8, 28456–28466. https://doi.org/10.1021/acsomega.3c02697 (2023).
-
Guex, N., Peitsch, M. C. & Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss‐Pdb viewer: a historical perspective. Electrophoresis 30, S162–S173. https://doi.org/10.1002/elps.200900140 (2009).
-
Kumar, M. & Rathore, R. S. RamPlot: a webserver to draw 2D, 3D and assorted Ramachandran (φ, ψ) maps. J. Appl. Cryst. 58, 630–636. https://doi.org/10.1107/S1600576725001669 (2025).
-
Chandrasekhar, I. et al. A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur. Biophys. J. 32, 67–77. https://doi.org/10.1007/s00249-002-0269-4 (2003).
-
Ismael, M., Eladel, E., El-Taher, M. A. E. D. & Gad, A. A. M. Structural design, and biological assessment of Co. Ni2+ Cu2+ Zn2+ Complexes N-(phenyl)-2-imino-2H-chromene-3-carboxamide Inorg. Chem. Commun. 158, 111492. https://doi.org/10.1016/j.inoche.2023.111492 (2023).
-
Lang, P. T. et al. DOCK 6: combining techniques to model RNA–small molecule complexes. RNA 15, 1219–1230. https://doi.org/10.1261/rna.1563609 (2009).
-
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786. https://doi.org/10.1021/ci200227u (2011).
-
Boudreau, M. D. et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the Sprague Dawley rat following daily oral gavage administration for 13 weeks. Toxicol. Sci. 150, 131–160. https://doi.org/10.1093/toxsci/kfv318 (2016).
-
Kowalska-Krochmal, B. & Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 10, 165. https://doi.org/10.3390/pathogens10020165 (2021).
-
Singh, S., Kuca, K. & Kalia, A. Alterations in growth and morphology of Ganoderma lucidum and Volvariella volvaceae in response to nanoparticle supplementation. Mycobiology 48, 383–391. https://doi.org/10.1080/12298093.2020.1809613 (2020).
-
Sharma, S. et al. Staphylococcus aureus including MRSA nasal carriage among hospital exposed and unexposed medical students. J. Family Med. Prim. Care. 9, 4936–4941. https://doi.org/10.4103/jfmpc.jfmpc_820_20 (2020).
-
Aliyu, Y. et al. Determination of antibiotic resistance patterns of beta-lactamase-producing Escherichia coli strains from Kindirmo in Nasarawa Ttown, Nasarawa State, Nigeria. UMYU J. Microbiol. Res. 9, 201–206. https://doi.org/10.47430/ujmr.2493.024 (2024).
-
Lumivero XLSTAT statistical and data analysis solution. https://www.xlstat.com/en (2024)
