References
-
Saxena, A. K., Kumar, M., Anuroopa, N., Bagyaraj, D. J. & Chakdar, H. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128, 1583–1594 (2019).
-
Lopes, R., Tsui, S., Gonçalves, P. J. R. & de Queiroz, M. V. A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J. Microbiol. Biotechnol. 34, 1–10. https://doi.org/10.1007/s11274-018-2479-7 (2018).
-
Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B. & Cammue B.P.A. Screening for novel biocontrol agents applicable in plant disease management—A review. Biol. Control. 144, 104240 (2020).
-
Sulaiman, M. A. & Bello, S. K. Biological control of soil-borne pathogens in arid lands: a review. J. Plant. Dis. Prot. 131, 293–313. https://doi.org/10.1007/s41348-023-00824-7 (2024).
-
Fira, D., Dimkić, I., Berić, T., Lozo, J. & Stanković, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285, 44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044 (2018).
-
El-Saadony, M. T. et al. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: mechanisms, challenges and future perspectives. Front. Plant. Sci. 13, 923880. https://doi.org/10.3389/fpls.2022.923880 (2022).
-
Pecci, Y., Rivardo, F., Martinotti, M. G. & Allegrone, G. LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J. Mass. Spectrom. 45, 772–778. https://doi.org/10.1002/jms.1767 (2010).
-
Bartal, A. et al. Effects of different cultivation parameters on the production of surfactin variants by a Bacillus subtilis strain. Molecules 23, 2675. https://doi.org/10.3390/molecules23102675 (2018).
-
Paraszkiewicz, K. et al. Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production. Sci. Hortic. 225, 802–809 (2017).
-
Paraszkiewicz, K., Bernat, P., Kuśmierska, A., Chojniak, J. & Płaza, G. Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on media obtained from renewable natural resources. J. Environ. Manage. 209, 65–70. https://doi.org/10.1016/j.jenvman.2017.12.033 (2018).
-
Walaszczyk, A., Jasińska, A., Bernat, P., Płaza, G. & Paraszkiewicz, K. Microplastics influence on herbicides removal and biosurfactants production by a Bacillus sp. strain active against Fusarium culmorum. Sci. Rep. 13, 14618. https://doi.org/10.1038/s41598-023-41210-5 (2023).
-
Bakker, C. et al. Fungal membrane determinants affecting sensitivity to antifungal Cyclic lipopeptides from Bacillus spp. Fungal Biol. 128, 2080–2088. https://doi.org/10.1016/j.funbio.2024.08.006 (2024).
-
Diniz, G. F. D. et al. Chemical and genetic characterization of lipopeptides from Bacillus velezensis and Paenibacillus ottowii with activity against Fusarium verticillioides. Front. Microbiol. 15, 1443327 https://doi.org/10.3389/fmicb.2024.1443327 (2024).
-
Mnif, I. & Ghribi, D. Lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104, 129–147. https://doi.org/10.1002/bip.22630 (2015).
-
Ma, Y. et al. Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC–ESI–MS/MS. AMB Express. 6, 1–9. https://doi.org/10.1186/s13568-016-0252-6 (2016).
-
Sharma, R., Singh, J. & Verma, N. Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatal. Agric. Biotechnol. 16, 132–139. https://doi.org/10.1016/j.bcab.2018.07.028 (2018).
-
Markelova, N. & Chumak, A. Antimicrobial activity of Bacillus Cyclic lipopeptides and their role in the host adaptive response to changes in environmental conditions. Int. J. Mol. Sci. 26, 336. https://doi.org/10.3390/ijms26010336 (2025).
-
Saiyam, D., Dubey, A., Malla, M. A. & Kumar, A. Lipopeptides from Bacillus: unveiling biotechnological prospects—sources, properties, and diverse applications. Braz J. Microbiol. 55, 281–295. https://doi.org/10.1007/s42770-023-01228-3 (2024).
-
Mihalache, G. et al. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ. Sci. Pollut Res. 25, 29784–29793. https://doi.org/10.1007/s11356-017-9162-7 (2017).
-
Wang, Y. et al. Surfactin and Fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms. Appl. Microbiol. Biotechnol. 104, 7467–7481. https://doi.org/10.1007/s00253-020-10773-y (2020).
-
Datta, D. et al. Microbial biosurfactants: multifarious applications in sustainable agriculture. Microbiol. Res. 279, 127551. https://doi.org/10.1016/j.micres.2023.127551 (2024).
-
Chen, M. et al. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum. J. Appl. Microbiol. 135, lxae048. https://doi.org/10.1093/jambio/lxae048 (2024).
-
Jasińska, A., Soboń, A., Różalska, S. & Średnicka, P. Bisphenol A removal by the fungus Myrothecium roridum IM 6482—analysis of the cellular and subcellular level. Int. J. Mol. Sci. 22, 10676 (2021).
-
Jasińska, A., Różalska, S., Rusetskaya, V., Słaba, M. & Bernat, P. Microplastic-induced oxidative stress in metolachlor-degrading filamentous fungus Trichoderma Harzianum. Int. J. Mol. Sci. 23, 12978. https://doi.org/10.3390/ijms232112978 (2022).
-
Jain, D. K., Collins-Thompson, D. L., Lee, H. & Trevors, J. T. A drop-collapsing test for screening surfactant-producing microorganisms. J. Microbiol. Methods. 13, 271–279. https://doi.org/10.1016/0167-7012(91)90064-W (1991).
-
Salazar, B. et al. Bacillus spp. As bio-factories for antifungal secondary metabolites: innovation beyond whole organism formulations. Microb. Ecol. 86, 1–24. https://doi.org/10.1007/s00248-023-02175-w (2023).
-
Jasim, B., Sreelakshmi, K. S., Mathew, J. & Radhakrishnan, E. K. Surfactin, iturin, and Fengycin biosynthesis by endophytic Bacillus sp. from Bacopa monnieri. Microb. Ecol. 72, 106–119. https://doi.org/10.1007/s00248-016-0753-5 (2016).
-
Crouzet, J. et al. Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Front. Bioeng. Biotechnol. 8, 1014. https://doi.org/10.3389/fbioe.2020.01014 (2020).
-
Sharma, J., Sundar, D. & Srivastava, P. Biosurfactants: potential agents for controlling cellular communication, motility, and antagonism. Front. Mol. Biosci. 8, 727070. https://doi.org/10.3389/fmolb.2021.727070 (2021).
-
Kohlmeier, S. et al. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ. Sci. Technol. 39, 4640–4646. https://doi.org/10.1021/es047979z (2005).
-
Ingham, C. J., Kalisman, O., Finkelshtein, A. & Ben-Jacob, E. Mutually facilitated dispersal between the nonmotile fungus Aspergillus fumigatus and the swarming bacterium Paenibacillus vortex. Proc. Natl. Acad. Sci. U S A. 108, 19731–19736. https://doi.org/10.1073/pnas.1102097108 (2011).
-
Haq, I. U., Zhang, M., Yang, P. & van Elsas, J. D. The interactions of bacteria with fungi in soil: emerging concepts. Adv. Appl. Microbiol. 89, 185–215. https://doi.org/10.1016/B978-0-12-800259-9.00005-6 (2014).
-
Liu, Y. et al. Membrane disruption and DNA binding of Fusarium graminearum cells induced by C16-fengycin A produced by Bacillus amyloliquefaciens. Food Control. 102, 206–213. https://doi.org/10.1016/j.foodcont.2019.03.031 (2019).
-
Andrić, S., Meyer, T. & Ongena, M. Bacillus responses to plant-associated fungal and bacterial communities. Front. Microbiol. 11, 1350. https://doi.org/10.3389/fmicb.2020.01350 (2020).
-
Cawoy, H. et al. Lipopeptides as main ingredients for Inhibition of fungal phytopathogens by. Bacillus subtilis/Amyloliquefaciens Microb. Biotechnol. 8, 281–295. https://doi.org/10.1111/1751-7915.12238 (2014).
-
Liu, Y. et al. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol. Lett. 353, 49–56 (2014).
-
Chowdhury, S. P. et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. Plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia Solani. Mol. Plant-Microbe Interact. 28, 984–995. https://doi.org/10.1094/MPMI-03-15-0066-R (2015).
-
Kulimushi, P. Z. et al. Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Front. Microbiol. 8, 850. https://doi.org/10.3389/fmicb.2017.00850 (2017).
-
Hirozawa, M. T. et al. Antifungal effect and selected properties of cell-free supernatants of two Bacillus subtilis isolates against Fusarium verticillioides. Braz J. Microbiol. 55, 1–12. https://doi.org/10.1007/s42770-024-01414-x (2024).
-
Zhao, H. et al. Cell-free supernatant of Bacillus velezensis suppresses mycelial growth and reduces virulence of Botrytis cinerea by inducing oxidative stress. Front. Microbiol. 13, 980022. https://doi.org/10.3389/fmicb.2022.980022 (2022).
-
Liu, J., Hagberg, I., Novitsky, L., Hadj-Moussa, H. & Avis, T. J. Interaction of antimicrobial Cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biol. 118, 855–861. https://doi.org/10.1016/j.funbio.2014.07.004 (2014).
-
Wise, C., Falardeau, J., Hagberg, I. & Avis, T. J. Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology 104, 1036–1041. https://doi.org/10.1094/PHYTO-12-13-0336-R (2014).
-
López-Bucio, J. et al. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis Thaliana. Mol. Plant-Microbe Interact. 20, 207–217. https://doi.org/10.1094/MPMI-20-2-0207 (2007).
-
Batista, B. D. et al. The auxin-producing Bacillus Thuringiensis RZ2MS9 promotes growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom). Arch. Microbiol. 203, 3869–3882. https://doi.org/10.1007/s00203-021-02361-z (2021).
-
Liu, J. et al. Effect of Bacillus paralicheniformis on soybean (Glycine max) root colonization, nutrient uptake and water use efficiency under drought stress. J. Agron. Crop Sci. 209, 547–565. https://doi.org/10.1111/jac.12639 (2023).
-
Jensen, C. N. G. et al. Bacillus subtilis promotes plant phosphorus acquisition through P solubilization and stimulation of root and root hair growth. Physiol. Plant. 176, e14338. https://doi.org/10.1111/ppl.14338 (2024).
-
Jensen, C. N. G. et al. Differential influence of Bacillus subtilis strains on Arabidopsis root architecture through common and distinct plant hormonal pathways. Plant. Sci. 339, 111936. https://doi.org/10.1016/j.plantsci.2023.111936 (2024).
-
Sharifi, R. & Ryu, C. M. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann. Bot. 122, 349–358. https://doi.org/10.1093/aob/mcy108 (2018).
-
Mahapatra, S., Yadav, R. & Ramakrishna, W. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol. 132, e15480. https://doi.org/10.1111/jam.15480 (2022).
-
Duan, Y. et al. Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Front. Microbiol. 12, 746799. https://doi.org/10.3389/fmicb.2021.746799 (2021).
-
Pylak, M., Oszust, K. & Frąc, M. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol. 18, 597–616. https://doi.org/10.1007/s11157-019-09500-5 (2019).
