References
-
Mongy, Y. & Shalaby, T. Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells. Sci. Rep. 14, 13470. https://doi.org/10.1038/s41598-024-63258-7 (2024).
-
Cheng, F. et al. Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects. Colloids Surf. B Biointerfaces. 205, 111878. https://doi.org/10.1016/j.colsurfb.2021.111878 (2021).
-
Alhalili, Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 28, https://doi.org/10.3390/molecules28073086 (2023).
-
Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49. https://doi.org/10.3322/caac.21820 (2024).
-
Liu, B., Zhou, H., Tan, L., Siu, K. T. H. & Guan, X. Y. Exploring treatment options in cancer: tumor treatment strategies. Signal. Transduct. Target. Ther. 9, 175. https://doi.org/10.1038/s41392-024-01856-7 (2024).
-
Debela, D. T. et al. New approaches and procedures for cancer treatment: current perspectives. SAGE Open. Med. 9, 20503121211034366. https://doi.org/10.1177/20503121211034366 (2021).
-
Vaghari-Tabari, M., Jafari-Gharabaghlou, D., Mohammadi, M. & Hashemzadeh, M. S. Zinc oxide nanoparticles and cancer chemotherapy: helpful tools for enhancing Chemo-sensitivity and reducing side effects? Biol. Trace Elem. Res. 202, 1878–1900. https://doi.org/10.1007/s12011-023-03803-z (2024).
-
Tang, J. L. Y., Moonshi, S. S. & Ta, H. T. Nanoceria: an innovative strategy for cancer treatment. Cell. Mol. Life Sci. 80, 46. https://doi.org/10.1007/s00018-023-04694-y (2023).
-
Yuvasri, C., Dhanavel, D., Venkatesalu, V. & Gopalakrishanan, M. Green synthesis, characterization and in vitro biomedical applications of Coldenia procumbens Linn. Synthesized zinc oxide nanoparticles (ZnONPs). Inorg. Chem. Commun. 178, 114470. https://doi.org/10.1016/j.inoche.2025.114470 (2025).
-
Korkmaz, N. et al. Synthesis of CeO2 nanoparticles from hemp leaf extract: evaluation of Antibacterial, anticancer and enzymatic activities. Inorg. Chem. Commun. 159, 111797. https://doi.org/10.1016/j.inoche.2023.111797 (2024).
-
Mousaiyan, S., Baharara, J. & Es-haghi, A. Biopreparation of cerium oxide nanoparticles using alginate: characterization and Estimation of antioxidant and its activity against breast cancer cell lines (MCF7). Results Chem. 7, 101468. https://doi.org/10.1016/j.rechem.2024.101468 (2024).
-
Javid, H., Hashemy, S. I., Heidari, M. F., Esparham, A. & Gorgani-Firuzjaee, S. The Anticancer Role of Cerium Oxide Nanoparticles by Inducing Antioxidant Activity in Esophageal Cancer and Cancer Stem-Like ESCC Spheres. Biomed Res Int 3268197. (2022). https://doi.org/10.1155/2022/3268197 (2022).
-
Efati, Z. et al. Green chemistry synthesized zinc oxide nanoparticles in lepidium sativum L. seed extract and evaluation of their anticancer activity in human colorectal cancer cells. Ceram. Int. 49, 32568–32576. https://doi.org/10.1016/j.ceramint.2023.07.221 (2023).
-
Nourmohammadi, E. et al. Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using Carrageenan towards a WEHI 164 cancer cell line. Ceram. Int. 44, 19570–19575. https://doi.org/10.1016/j.ceramint.2018.07.201 (2018).
-
Asghari Moghaddam, N. et al. Green synthesis of bimetallic AgZnO nanoparticles: synergistic anticancer effects through regulation of gene expression for lung cancer treatment. Results Eng. 22, 102329. https://doi.org/10.1016/j.rineng.2024.102329 (2024).
-
Larranaga-Tapia, M., Betancourt-Tovar, B., Videa, M., Antunes-Ricardo, M. & Cholula-Diaz, J. L. Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. Nanoscale Adv. 6, 51–71. https://doi.org/10.1039/d3na00761h (2023).
-
Idris, D. S. & Roy, A. Biogenic synthesis of Ag–CuO nanoparticles and its Antibacterial, Antioxidant, and catalytic activity. J. Inorg. Organomet. Polym. Mater. 34, 1055–1067. https://doi.org/10.1007/s10904-023-02873-9 (2023).
-
Cao, Y. et al. Green synthesis of bimetallic ZnO-CuO nanoparticles and their cytotoxicity properties. Sci. Rep. 11, 23479. https://doi.org/10.1038/s41598-021-02937-1 (2021).
-
Sheema et al. Green Synthesis, biological Potential, and semiconducting properties of mno:zno bimetallic nanocomposites. J. Inorg. Organomet. Polym. Mater. 35, 6688–6708. https://doi.org/10.1007/s10904-025-03689-5 (2025).
-
Singh, J. et al. Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84. https://doi.org/10.1186/s12951-018-0408-4 (2018).
-
Yizengaw, D. E., Godie, E. M. & Manayia, A. H. Green synthesis and characterization of ZnO nanoparticles using Justicia schemperiana leaf extract and its antibacterial and antioxidant activity. Inorg. Chem. Commun. 174, 114071. https://doi.org/10.1016/j.inoche.2025.114071 (2025).
-
Ying, S. et al. Green synthesis of nanoparticles: current developments and limitations. Environ. Technol. Innov. 26, 102336. https://doi.org/10.1016/j.eti.2022.102336 (2022).
-
Fordos, S. et al. Recent development in the application of walnut processing by-products (walnut shell and walnut husk). Biomass Convers. Biorefin. 13, 14389–14411. https://doi.org/10.1007/s13399-023-04778-6 (2023).
-
Zamani, A., Marjani, A. P. & Mousavi, Z. Agricultural waste biomass-assisted nanostructures: synthesis and application. Green. Process. Synth. 8, 421–429. https://doi.org/10.1515/gps-2019-0010 (2019).
-
Alabyadh, T. et al. ZnO/CeO2 nanocomposites: Metal-Organic Framework-Mediated Synthesis, Characterization, and Estimation of cellular toxicity toward liver cancer cells. J. Funct. Biomater. 13, 139. https://doi.org/10.3390/jfb13030139 (2022).
-
Hu, X. et al. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 135, 17617–17629. https://doi.org/10.1021/ja409686x (2013).
-
Zamani, A., Marjani, A. P. & Alimoradlu, K. Walnut Shell-Templated ceria nanoparticles: green Synthesis, characterization and catalytic application. Int. J. Nanosci. 17, 1850008. https://doi.org/10.1142/s0219581x18500084 (2018).
-
Zamani, A., Poursattar Marjani, A. & Abedi Mehmandar, M. Synthesis of high surface area Magnesia by using walnut shell as a template. Green. Process. Synth. 8, 199–206. https://doi.org/10.1515/gps-2018-0066 (2019).
-
Al Bitar, M., Hassanieh, B., Awad, R. & Khalil, M. Characterization and evaluation of the therapeutic benefits of pure and lanthanides mono- and co-doped zinc oxide nanoparticles. Saudi J. Biol. Sci. 30, 103608. https://doi.org/10.1016/j.sjbs.2023.103608 (2023).
-
Gulcin, İ. & Alwasel, S. H. DPPH Radical Scavenging Assay. proc 11. (2023). https://doi.org/10.3390/pr11082248
-
Kim, H. & Xue, X. Detection of total reactive oxygen species in adherent cells by 2’,7’-Dichlorodihydrofluorescein diacetate staining. J. Vis. Exp. https://doi.org/10.3791/60682 (2020).
-
Ma, L. et al. Zn/Ce metal-organic framework-derived ZnO@CeO2 nano-heterojunction for enhanced photocatalytic activity. Colloid Interface Sci. Commun. 49, 100636. https://doi.org/10.1016/j.colcom.2022.100636 (2022).
-
Mueen, R. et al. ZnO/CeO2 nanocomposite with low photocatalytic activity as efficient UV filters. J. Mater. Sci. 55, 6834–6847. https://doi.org/10.1007/s10853-020-04493-x (2020).
-
Wang, C., Fan, H., Ren, X. & Fang, J. Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures. Appl. Phys. A. 124, 99. https://doi.org/10.1007/s00339-017-1543-8 (2018).
-
Purushotham, D. et al. Green synthesis of zinc oxide nanoparticles using aqueous extract of pavonia Zeylanica to mediate photocatalytic degradation of methylene blue: studies on reaction Kinetics, reusability and mineralization. Int. J. Mol. Sci. 26, 4739. https://doi.org/10.3390/ijms26104739 (2025).
-
Syed, A. et al. Effect of CeO2-ZnO nanocomposite for photocatalytic and antibacterial activities. Crystals 10, 817 (2020).
-
Faisal, S. et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of myristica fragrans: their characterizations and biological and environmental applications. ACS Omega. 6, 9709–9722. https://doi.org/10.1021/acsomega.1c00310 (2021).
-
Bazta, O. et al. In-Depth Structural and Optical Analysis of Ce-modified ZnO Nanopowders with Enhanced Photocatalytic Activity Prepared by Microwave-Assisted Hydrothermal Method. Catalysts 10, 551. (2020). https://doi.org/10.3390/catal10050551
-
Banu, A. et al. Green synthesis of Z-scheme CeO2 decorated ZnO nanocomposites for photodegradation of organic pollutants, antioxidant activity and its effects on seed germination. J. Mol. Liq. 414, 126252. https://doi.org/10.1016/j.molliq.2024.126252 (2024).
-
Mousa, S. A., Wissa, D. A., Hassan, H. H., Ebnalwaled, A. A. & Khairy, S. A. Enhanced photocatalytic activity of green synthesized zinc oxide nanoparticles using low-cost plant extracts. Sci. Rep. 14, 16713. https://doi.org/10.1038/s41598-024-66975-1 (2024).
-
Chouchene, B. et al. High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis. Beilstein J. Nanotechnol. 7, 1338–1349. https://doi.org/10.3762/bjnano.7.125 (2016).
-
Alhalili, Z. & Metal Oxides Nanoparticles General structural Description, Chemical, Physical, and biological synthesis Methods, role in pesticides and heavy metal removal through wastewater treatment. Molecules 28, 3086. https://doi.org/10.3390/molecules28073086 (2023).
-
Ma, R. et al. Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 46, 752–759. https://doi.org/10.1021/es201686j (2012).
-
Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8, 409–427. https://doi.org/10.1007/s12551-016-0218-6 (2016).
-
Moore, T. L. et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44, 6287–6305. https://doi.org/10.1039/c4cs00487f (2015).
-
Bhattacharjee, S. DLS and zeta potential – What they are and what they are not? J. Contr Release. 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017 (2016).
-
Clogston, J. D. & Patri, A. K. Zeta potential measurement. Methods Mol. Biol. 697, 63–70. https://doi.org/10.1007/978-1-60327-198-1_6 (2011).
-
Friel, J. J. & Lyman, C. E. X-ray mapping in electron-beam instruments. Microsc Microanal. 12, 2–25. https://doi.org/10.1017/S1431927606060211 (2006).
-
Alabyadh, T. et al. ZnO/CeO(2) Nanocomposites: Metal-Organic Framework-Mediated Synthesis, Characterization, and Estimation of Cellular Toxicity toward Liver Cancer Cells. J. Funct. Biomater. 13, https://doi.org/10.3390/jfb13030139 (2022).
-
Akhtar, M. J., Ahamed, M. & Alhadlaq, H. CeO(2)-Zn Nanocomposite Induced Superoxide, Autophagy and a Non-Apoptotic Mode of Cell Death in Human Umbilical-Vein-Derived Endothelial (HUVE) Cells. Toxics 10. (2022). https://doi.org/10.3390/toxics10050250
-
Hadji, H. & Bouchemal, K. Effect of micro- and nanoparticle shape on biological processes. J. Contr Release. 342, 93–110. https://doi.org/10.1016/j.jconrel.2021.12.032 (2022).
-
Ozturk, K., Kaplan, M. & Calis, S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. 666, 124799. https://doi.org/10.1016/j.ijpharm.2024.124799 (2024).
-
Diepstraten, S. T. et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer. 22, 45–64. https://doi.org/10.1038/s41568-021-00407-4 (2022).
-
Plemel, J. R. et al. Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. J. Cell. Biol. 216, 1163–1181. https://doi.org/10.1083/jcb.201602028 (2017).
-
Solanki, R., Rajput, P. K., Jodha, B., Yadav, U. C. S. & Patel, S. Enhancing apoptosis-mediated anticancer activity of Evodiamine through protein-based nanoparticles in breast cancer cells. Sci. Rep. 14, 2595. https://doi.org/10.1038/s41598-024-51970-3 (2024).
-
Fischer, M. Census and evaluation of p53 target genes. Oncogene 36, 3943–3956. https://doi.org/10.1038/onc.2016.502 (2017).
-
Adeniyi, O. E., Adebayo, O. A., Akinloye, O. & Adaramoye, O. A. Combined cerium and zinc oxide nanoparticles induced hepato-renal damage in rats through oxidative stress mediated inflammation. Sci. Rep. 13, 8513. https://doi.org/10.1038/s41598-023-35453-5 (2023).
-
Shnawa, B. H. et al. Evaluation of antimicrobial and antioxidant activity of zinc oxide nanoparticles biosynthesized with Ziziphus spina-christi leaf extracts. J. Environ. Sci. Health C Toxicol. Carcinog. 42, 93–108. https://doi.org/10.1080/26896583.2023.2293443 (2024).
-
E Ahmed, H. et al. Green Synthesis of CeO(2) Nanoparticles from the Abelmoschus esculentus Extract: Evaluation of Antioxidant, Anticancer, Antibacterial, and Wound-Healing Activities. Molecules 26, https://doi.org/10.3390/molecules26154659 (2021).
-
Biswas, A., Kar, U. & Jana, N. R. Cytotoxicity of ZnO nanoparticles under dark conditions via oxygen vacancy dependent reactive oxygen species generation. Phys. Chem. Chem. Phys. 24, 13965–13975. https://doi.org/10.1039/d2cp00301e (2022).
-
Qiu, Y. et al. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO(2-x) NPs. Nanoscale 7, 6588–6598. https://doi.org/10.1039/c5nr00884k (2015).
-
Shi, T., van Soest, D. M. K., Polderman, P. E., Burgering, B. M. T. & Dansen, T. B. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic Biol. Med. 172, 298–311. https://doi.org/10.1016/j.freeradbiomed.2021.06.013 (2021).
