Biosynthesized bimetallic nanoparticles containing CeO2 and ZnO exert shape and size dependent anticancer effects

biosynthesized-bimetallic-nanoparticles-containing-ceo2-and-zno-exert-shape-and-size-dependent-anticancer-effects
Biosynthesized bimetallic nanoparticles containing CeO2 and ZnO exert shape and size dependent anticancer effects

References

  1. Mongy, Y. & Shalaby, T. Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells. Sci. Rep. 14, 13470. https://doi.org/10.1038/s41598-024-63258-7 (2024).

    Google Scholar 

  2. Cheng, F. et al. Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects. Colloids Surf. B Biointerfaces. 205, 111878. https://doi.org/10.1016/j.colsurfb.2021.111878 (2021).

    Google Scholar 

  3. Alhalili, Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 28, https://doi.org/10.3390/molecules28073086 (2023).

  4. Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49. https://doi.org/10.3322/caac.21820 (2024).

    Google Scholar 

  5. Liu, B., Zhou, H., Tan, L., Siu, K. T. H. & Guan, X. Y. Exploring treatment options in cancer: tumor treatment strategies. Signal. Transduct. Target. Ther. 9, 175. https://doi.org/10.1038/s41392-024-01856-7 (2024).

    Google Scholar 

  6. Debela, D. T. et al. New approaches and procedures for cancer treatment: current perspectives. SAGE Open. Med. 9, 20503121211034366. https://doi.org/10.1177/20503121211034366 (2021).

    Google Scholar 

  7. Vaghari-Tabari, M., Jafari-Gharabaghlou, D., Mohammadi, M. & Hashemzadeh, M. S. Zinc oxide nanoparticles and cancer chemotherapy: helpful tools for enhancing Chemo-sensitivity and reducing side effects? Biol. Trace Elem. Res. 202, 1878–1900. https://doi.org/10.1007/s12011-023-03803-z (2024).

    Google Scholar 

  8. Tang, J. L. Y., Moonshi, S. S. & Ta, H. T. Nanoceria: an innovative strategy for cancer treatment. Cell. Mol. Life Sci. 80, 46. https://doi.org/10.1007/s00018-023-04694-y (2023).

    Google Scholar 

  9. Yuvasri, C., Dhanavel, D., Venkatesalu, V. & Gopalakrishanan, M. Green synthesis, characterization and in vitro biomedical applications of Coldenia procumbens Linn. Synthesized zinc oxide nanoparticles (ZnONPs). Inorg. Chem. Commun. 178, 114470. https://doi.org/10.1016/j.inoche.2025.114470 (2025).

    Google Scholar 

  10. Korkmaz, N. et al. Synthesis of CeO2 nanoparticles from hemp leaf extract: evaluation of Antibacterial, anticancer and enzymatic activities. Inorg. Chem. Commun. 159, 111797. https://doi.org/10.1016/j.inoche.2023.111797 (2024).

    Google Scholar 

  11. Mousaiyan, S., Baharara, J. & Es-haghi, A. Biopreparation of cerium oxide nanoparticles using alginate: characterization and Estimation of antioxidant and its activity against breast cancer cell lines (MCF7). Results Chem. 7, 101468. https://doi.org/10.1016/j.rechem.2024.101468 (2024).

    Google Scholar 

  12. Javid, H., Hashemy, S. I., Heidari, M. F., Esparham, A. & Gorgani-Firuzjaee, S. The Anticancer Role of Cerium Oxide Nanoparticles by Inducing Antioxidant Activity in Esophageal Cancer and Cancer Stem-Like ESCC Spheres. Biomed Res Int 3268197. (2022). https://doi.org/10.1155/2022/3268197 (2022).

  13. Efati, Z. et al. Green chemistry synthesized zinc oxide nanoparticles in lepidium sativum L. seed extract and evaluation of their anticancer activity in human colorectal cancer cells. Ceram. Int. 49, 32568–32576. https://doi.org/10.1016/j.ceramint.2023.07.221 (2023).

    Google Scholar 

  14. Nourmohammadi, E. et al. Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using Carrageenan towards a WEHI 164 cancer cell line. Ceram. Int. 44, 19570–19575. https://doi.org/10.1016/j.ceramint.2018.07.201 (2018).

    Google Scholar 

  15. Asghari Moghaddam, N. et al. Green synthesis of bimetallic AgZnO nanoparticles: synergistic anticancer effects through regulation of gene expression for lung cancer treatment. Results Eng. 22, 102329. https://doi.org/10.1016/j.rineng.2024.102329 (2024).

    Google Scholar 

  16. Larranaga-Tapia, M., Betancourt-Tovar, B., Videa, M., Antunes-Ricardo, M. & Cholula-Diaz, J. L. Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. Nanoscale Adv. 6, 51–71. https://doi.org/10.1039/d3na00761h (2023).

    Google Scholar 

  17. Idris, D. S. & Roy, A. Biogenic synthesis of Ag–CuO nanoparticles and its Antibacterial, Antioxidant, and catalytic activity. J. Inorg. Organomet. Polym. Mater. 34, 1055–1067. https://doi.org/10.1007/s10904-023-02873-9 (2023).

    Google Scholar 

  18. Cao, Y. et al. Green synthesis of bimetallic ZnO-CuO nanoparticles and their cytotoxicity properties. Sci. Rep. 11, 23479. https://doi.org/10.1038/s41598-021-02937-1 (2021).

    Google Scholar 

  19. Sheema et al. Green Synthesis, biological Potential, and semiconducting properties of mno:zno bimetallic nanocomposites. J. Inorg. Organomet. Polym. Mater. 35, 6688–6708. https://doi.org/10.1007/s10904-025-03689-5 (2025).

    Google Scholar 

  20. Singh, J. et al. Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84. https://doi.org/10.1186/s12951-018-0408-4 (2018).

    Google Scholar 

  21. Yizengaw, D. E., Godie, E. M. & Manayia, A. H. Green synthesis and characterization of ZnO nanoparticles using Justicia schemperiana leaf extract and its antibacterial and antioxidant activity. Inorg. Chem. Commun. 174, 114071. https://doi.org/10.1016/j.inoche.2025.114071 (2025).

    Google Scholar 

  22. Ying, S. et al. Green synthesis of nanoparticles: current developments and limitations. Environ. Technol. Innov. 26, 102336. https://doi.org/10.1016/j.eti.2022.102336 (2022).

    Google Scholar 

  23. Fordos, S. et al. Recent development in the application of walnut processing by-products (walnut shell and walnut husk). Biomass Convers. Biorefin. 13, 14389–14411. https://doi.org/10.1007/s13399-023-04778-6 (2023).

    Google Scholar 

  24. Zamani, A., Marjani, A. P. & Mousavi, Z. Agricultural waste biomass-assisted nanostructures: synthesis and application. Green. Process. Synth. 8, 421–429. https://doi.org/10.1515/gps-2019-0010 (2019).

    Google Scholar 

  25. Alabyadh, T. et al. ZnO/CeO2 nanocomposites: Metal-Organic Framework-Mediated Synthesis, Characterization, and Estimation of cellular toxicity toward liver cancer cells. J. Funct. Biomater. 13, 139. https://doi.org/10.3390/jfb13030139 (2022).

    Google Scholar 

  26. Hu, X. et al. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 135, 17617–17629. https://doi.org/10.1021/ja409686x (2013).

    Google Scholar 

  27. Zamani, A., Marjani, A. P. & Alimoradlu, K. Walnut Shell-Templated ceria nanoparticles: green Synthesis, characterization and catalytic application. Int. J. Nanosci. 17, 1850008. https://doi.org/10.1142/s0219581x18500084 (2018).

    Google Scholar 

  28. Zamani, A., Poursattar Marjani, A. & Abedi Mehmandar, M. Synthesis of high surface area Magnesia by using walnut shell as a template. Green. Process. Synth. 8, 199–206. https://doi.org/10.1515/gps-2018-0066 (2019).

    Google Scholar 

  29. Al Bitar, M., Hassanieh, B., Awad, R. & Khalil, M. Characterization and evaluation of the therapeutic benefits of pure and lanthanides mono- and co-doped zinc oxide nanoparticles. Saudi J. Biol. Sci. 30, 103608. https://doi.org/10.1016/j.sjbs.2023.103608 (2023).

    Google Scholar 

  30. Gulcin, İ. & Alwasel, S. H. DPPH Radical Scavenging Assay. proc 11. (2023). https://doi.org/10.3390/pr11082248

  31. Kim, H. & Xue, X. Detection of total reactive oxygen species in adherent cells by 2’,7’-Dichlorodihydrofluorescein diacetate staining. J. Vis. Exp. https://doi.org/10.3791/60682 (2020).

    Google Scholar 

  32. Ma, L. et al. Zn/Ce metal-organic framework-derived ZnO@CeO2 nano-heterojunction for enhanced photocatalytic activity. Colloid Interface Sci. Commun. 49, 100636. https://doi.org/10.1016/j.colcom.2022.100636 (2022).

    Google Scholar 

  33. Mueen, R. et al. ZnO/CeO2 nanocomposite with low photocatalytic activity as efficient UV filters. J. Mater. Sci. 55, 6834–6847. https://doi.org/10.1007/s10853-020-04493-x (2020).

    Google Scholar 

  34. Wang, C., Fan, H., Ren, X. & Fang, J. Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures. Appl. Phys. A. 124, 99. https://doi.org/10.1007/s00339-017-1543-8 (2018).

    Google Scholar 

  35. Purushotham, D. et al. Green synthesis of zinc oxide nanoparticles using aqueous extract of pavonia Zeylanica to mediate photocatalytic degradation of methylene blue: studies on reaction Kinetics, reusability and mineralization. Int. J. Mol. Sci. 26, 4739. https://doi.org/10.3390/ijms26104739 (2025).

    Google Scholar 

  36. Syed, A. et al. Effect of CeO2-ZnO nanocomposite for photocatalytic and antibacterial activities. Crystals 10, 817 (2020).

    Google Scholar 

  37. Faisal, S. et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of myristica fragrans: their characterizations and biological and environmental applications. ACS Omega. 6, 9709–9722. https://doi.org/10.1021/acsomega.1c00310 (2021).

    Google Scholar 

  38. Bazta, O. et al. In-Depth Structural and Optical Analysis of Ce-modified ZnO Nanopowders with Enhanced Photocatalytic Activity Prepared by Microwave-Assisted Hydrothermal Method. Catalysts 10, 551. (2020). https://doi.org/10.3390/catal10050551

  39. Banu, A. et al. Green synthesis of Z-scheme CeO2 decorated ZnO nanocomposites for photodegradation of organic pollutants, antioxidant activity and its effects on seed germination. J. Mol. Liq. 414, 126252. https://doi.org/10.1016/j.molliq.2024.126252 (2024).

    Google Scholar 

  40. Mousa, S. A., Wissa, D. A., Hassan, H. H., Ebnalwaled, A. A. & Khairy, S. A. Enhanced photocatalytic activity of green synthesized zinc oxide nanoparticles using low-cost plant extracts. Sci. Rep. 14, 16713. https://doi.org/10.1038/s41598-024-66975-1 (2024).

    Google Scholar 

  41. Chouchene, B. et al. High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis. Beilstein J. Nanotechnol. 7, 1338–1349. https://doi.org/10.3762/bjnano.7.125 (2016).

    Google Scholar 

  42. Alhalili, Z. & Metal Oxides Nanoparticles General structural Description, Chemical, Physical, and biological synthesis Methods, role in pesticides and heavy metal removal through wastewater treatment. Molecules 28, 3086. https://doi.org/10.3390/molecules28073086 (2023).

    Google Scholar 

  43. Ma, R. et al. Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 46, 752–759. https://doi.org/10.1021/es201686j (2012).

    Google Scholar 

  44. Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8, 409–427. https://doi.org/10.1007/s12551-016-0218-6 (2016).

    Google Scholar 

  45. Moore, T. L. et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44, 6287–6305. https://doi.org/10.1039/c4cs00487f (2015).

    Google Scholar 

  46. Bhattacharjee, S. DLS and zeta potential – What they are and what they are not? J. Contr Release. 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017 (2016).

    Google Scholar 

  47. Clogston, J. D. & Patri, A. K. Zeta potential measurement. Methods Mol. Biol. 697, 63–70. https://doi.org/10.1007/978-1-60327-198-1_6 (2011).

    Google Scholar 

  48. Friel, J. J. & Lyman, C. E. X-ray mapping in electron-beam instruments. Microsc Microanal. 12, 2–25. https://doi.org/10.1017/S1431927606060211 (2006).

    Google Scholar 

  49. Alabyadh, T. et al. ZnO/CeO(2) Nanocomposites: Metal-Organic Framework-Mediated Synthesis, Characterization, and Estimation of Cellular Toxicity toward Liver Cancer Cells. J. Funct. Biomater. 13, https://doi.org/10.3390/jfb13030139 (2022).

  50. Akhtar, M. J., Ahamed, M. & Alhadlaq, H. CeO(2)-Zn Nanocomposite Induced Superoxide, Autophagy and a Non-Apoptotic Mode of Cell Death in Human Umbilical-Vein-Derived Endothelial (HUVE) Cells. Toxics 10. (2022). https://doi.org/10.3390/toxics10050250

  51. Hadji, H. & Bouchemal, K. Effect of micro- and nanoparticle shape on biological processes. J. Contr Release. 342, 93–110. https://doi.org/10.1016/j.jconrel.2021.12.032 (2022).

    Google Scholar 

  52. Ozturk, K., Kaplan, M. & Calis, S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. 666, 124799. https://doi.org/10.1016/j.ijpharm.2024.124799 (2024).

    Google Scholar 

  53. Diepstraten, S. T. et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer. 22, 45–64. https://doi.org/10.1038/s41568-021-00407-4 (2022).

    Google Scholar 

  54. Plemel, J. R. et al. Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. J. Cell. Biol. 216, 1163–1181. https://doi.org/10.1083/jcb.201602028 (2017).

    Google Scholar 

  55. Solanki, R., Rajput, P. K., Jodha, B., Yadav, U. C. S. & Patel, S. Enhancing apoptosis-mediated anticancer activity of Evodiamine through protein-based nanoparticles in breast cancer cells. Sci. Rep. 14, 2595. https://doi.org/10.1038/s41598-024-51970-3 (2024).

    Google Scholar 

  56. Fischer, M. Census and evaluation of p53 target genes. Oncogene 36, 3943–3956. https://doi.org/10.1038/onc.2016.502 (2017).

    Google Scholar 

  57. Adeniyi, O. E., Adebayo, O. A., Akinloye, O. & Adaramoye, O. A. Combined cerium and zinc oxide nanoparticles induced hepato-renal damage in rats through oxidative stress mediated inflammation. Sci. Rep. 13, 8513. https://doi.org/10.1038/s41598-023-35453-5 (2023).

    Google Scholar 

  58. Shnawa, B. H. et al. Evaluation of antimicrobial and antioxidant activity of zinc oxide nanoparticles biosynthesized with Ziziphus spina-christi leaf extracts. J. Environ. Sci. Health C Toxicol. Carcinog. 42, 93–108. https://doi.org/10.1080/26896583.2023.2293443 (2024).

    Google Scholar 

  59. E Ahmed, H. et al. Green Synthesis of CeO(2) Nanoparticles from the Abelmoschus esculentus Extract: Evaluation of Antioxidant, Anticancer, Antibacterial, and Wound-Healing Activities. Molecules 26, https://doi.org/10.3390/molecules26154659 (2021).

  60. Biswas, A., Kar, U. & Jana, N. R. Cytotoxicity of ZnO nanoparticles under dark conditions via oxygen vacancy dependent reactive oxygen species generation. Phys. Chem. Chem. Phys. 24, 13965–13975. https://doi.org/10.1039/d2cp00301e (2022).

    Google Scholar 

  61. Qiu, Y. et al. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO(2-x) NPs. Nanoscale 7, 6588–6598. https://doi.org/10.1039/c5nr00884k (2015).

    Google Scholar 

  62. Shi, T., van Soest, D. M. K., Polderman, P. E., Burgering, B. M. T. & Dansen, T. B. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic Biol. Med. 172, 298–311. https://doi.org/10.1016/j.freeradbiomed.2021.06.013 (2021).

    Google Scholar 

Download references