Black soldier fly larval oil as a renewable substrate for tailored PHA production

black-soldier-fly-larval-oil-as-a-renewable-substrate-for-tailored-pha-production
Black soldier fly larval oil as a renewable substrate for tailored PHA production

References

  1. The United Nations. Sustainable development goals site. https://www.un.org/sustainabledevelopment/sustainable-consumption-production/

  2. Moshood, T. D. et al. Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution?. Curr. Res. Green Sustain. Chem. 5, 100273 (2022).

    Google Scholar 

  3. Khanna, S. & Srivastava, A. K. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 40(2), 607–619. https://doi.org/10.1016/j.procbio.2004.01.053 (2005).

    Google Scholar 

  4. Sudesh, K. & Iwata, T. Sustainability of biobased and biodegradable plastics. CLEAN – Soil, Air, Water. 36(5–6), 433–442. https://doi.org/10.1002/clen.200700183 (2008).

    Google Scholar 

  5. Doi, Y., Segawa, A. & Kunioka, M. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int. J. Biol. Macromol. 12(2), 106–111. https://doi.org/10.1016/0141-8130(90)90061-e (1990).

    Google Scholar 

  6. Kahar, P., Tsuge, T., Taguchi, K. & Doi, Y. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad. Stab. 83(1), 79–86. https://doi.org/10.1016/S0141-3910(03)00227-1 (2004).

    Google Scholar 

  7. Chen, G. Q. Plastics from Bacteria: Natural Functions and Applications (Springer Berlin, Heidelberg 2010). https://doi.org/10.1007/978-3-642-03287-5.

    Google Scholar 

  8. Koller, M. et al. Polyhydroxyalkanoates from waste and surplus materials as a sustainable solution: challenges and opportunities. Biotechnol J. 8(6), 633–647. https://doi.org/10.1002/biot.201200499 (2013).

    Google Scholar 

  9. Murugan, P., Gan, C. Y. & Sudesh, K. Biosynthesis of P(3HB-co-3HHx) with improved molecular weights from a mixture of palm olein and fructose by Cupriavidus necator Re2058/pCB113. Int. J. Biol. Macromol. 102, 1112–1119. https://doi.org/10.1016/j.ijbiomac.2017.05.006 (2017).

    Google Scholar 

  10. Jiang, T. et al. Enhancing oil feedstock utilization for high-yield low-carbon polyhydroxyalkanoates industrial bioproduction. Metab. Eng. 91, 44–58. https://doi.org/10.1016/j.ymben.2025.04.001 (2025).

    Google Scholar 

  11. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M. & Shah, S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol. Adv. 25(2), 148–175. https://doi.org/10.1016/j.biotechadv.2006.11.002 (2007).

    Google Scholar 

  12. Lee, W. H., Loo, C. Y., Nomura, C. T. & Sudesh, K. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour. Technol. 99(15), 6844–6851. https://doi.org/10.1016/j.biortech.2008.01.051 (2008).

    Google Scholar 

  13. Loo, C. Y., Lee, W. H., Tsuge, T., Doi, Y. & Sudesh, K. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol. Lett. 27(18), 1405–1410. https://doi.org/10.1007/s10529-005-0690-8 (2005).

    Google Scholar 

  14. Gui, M. M., Lee, K. T. & Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11), 1646–1653. https://doi.org/10.1016/j.energy.2008.06.002 (2008).

    Google Scholar 

  15. Lalander, C., Diener, S., Zurbrügg, C. & Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean Prod. 208, 211–219. https://doi.org/10.1016/j.jclepro.2018.10.017 (2019).

    Google Scholar 

  16. Sheppard, C., Newton, L., Thompson, S. & Savage, S. A. Value added manure management system using the black soldier fly. Bioresour. Technol. 50(3), 275–279. https://doi.org/10.1016/0960-8524(94)90117-1 (1994).

    Google Scholar 

  17. Wang, YS., & Shelomi, M. Review of black soldier fly ( Hermetia illucens) as animal feed and human food, Foods, https://doi.org/10.3390/foods6100091 (2017).

  18. Ewusie, E. A. et al. The black soldier fly, Hermetia illucens (Diptera: Stratiomyidae): trapping and culturing of wild colonies in Ghana. Sci. Afr. https://doi.org/10.1016/j.sciaf.2019.e00134 (2019).

    Google Scholar 

  19. Gold, M., Tomberlin, J. K., Diener, S., Zurbrügg, C. & Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: a review. Waste Manag. 82, 302–318. https://doi.org/10.1016/j.wasman.2018.10.022 (2018).

    Google Scholar 

  20. Makkar, H. P. S., Tran, G., Heuzé, V. & Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 197, 1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008 (2014).

    Google Scholar 

  21. Surendra, K. C., Olivier, R., Nellemann, C. & Birkved, M. Rethinking organic wastes bioconversion: evaluating the potential of the black soldier fly (Hermetia illucens (l.)) (Diptera: Stratiomyidae) (BSF). Waste Manag. 117, 58–80. https://doi.org/10.1016/j.wasman.2020.07.050 (2020).

    Google Scholar 

  22. Wong, Y. M., Brigham, C. J., Rha, C., Sinskey, A. J. & Sudesh, K. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour Technol. 121, 320–327. https://doi.org/10.1016/j.biortech.2012.07.015 (2012).

    Google Scholar 

  23. Sato, S., Maruyama, H., Fujiki, T. & Matsumoto, K. Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate. J. Biosci. Bioeng. 120(3), 246–251. https://doi.org/10.1016/j.jbiosc.2015.01.016 (2015).

    Google Scholar 

  24. Ruiz, C., Kenny, S. T., Narancic, T., Babu, R. & Connor, O. K. Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. J. Biotechnol. 306, 9–15. https://doi.org/10.1016/j.jbiotec.2019.08.020 (2019).

    Google Scholar 

  25. Budde, C. F., Riedel, S. L., Willis, L. B., Rha, C. & Sinskey, A. J. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microbiol. 77(9), 2847–2854. https://doi.org/10.1128/AEM.02429-10 (2011).

    Google Scholar 

  26. Doi, Y., Kitamura, S. & Abe, H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14), 4822–4828. https://doi.org/10.1021/ma00118a007 (1995).

    Google Scholar 

  27. Bußler, S., Rumpold, B. A., Jander, E., Rawel, H. M. & Schlüter, O. K. Recovery and techno-functionality of flours and proteins from two edible insect species: mealworm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2(12), e00218. https://doi.org/10.1016/j.heliyon.2016.e00218 (2016).

    Google Scholar 

  28. Uğur, A. E., Bolat, B., Oztop, M. H. & Alpas, H. Effects of high hydrostatic pressure (hhp) processing and temperature on physicochemical characterization of insect oils extracted from Acheta domesticus (house cricket) and Tenebrio molitor (yellow mealworm). Waste Biomass Valor. https://doi.org/10.1007/s12649-020-01302-z (2020).

    Google Scholar 

  29. Zhao, X., Vázquez-Gutiérrez, J. L., Johansson, D. P., Landberg, R. & Langton, M. Yellow mealworm protein for food purposes—extraction and functional properties. PLoS ONE 11(2), e0147791. https://doi.org/10.1371/journal.pone.0147791 (2016).

    Google Scholar 

  30. Xu, Q. et al. Production and characterization of high-quality silkworm pupal oil for omega-3 fatty acid supplementation. Int. Food Res. J. 29, 540–551. https://doi.org/10.47836/ifrj.29.3.07 (2022).

    Google Scholar 

  31. Chee, J. Y., Tan, Y., Samian, M. R. & Sudesh, K. Isolation and characterization of a Burkholderia sp. USM (JCM15050.) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids, and glycerols. J. Polym. Environ. 18, 584–592. https://doi.org/10.1007/s10924-010-0204-1 (2010).

    Google Scholar 

  32. Barragán-Fonseca, K. B., Gort, G., Dicke, M. & van Loon, J. J. A. Effects of dietary protein and carbohydrate on life-history traits and body protein and fat contents of the black soldier fly. Physiol. Entomol. 44(2), 148–159. https://doi.org/10.1111/phen.12285 (2019).

    Google Scholar 

  33. Mai, H. C. et al. Purification process, physicochemical properties, and fatty acid composition of black soldier fly (Hermetia illucens Linnaeus) larvae oil. J. Am. Oil Chem. Soc. 96(11), 1303–1311. https://doi.org/10.1002/aocs.12263 (2019).

    Google Scholar 

  34. AOAC. Official methods of analysis, 17th ed. The association of official analytical chemists. (2000).

  35. Besbes, S. et al. Heating effects on some quality characteristics of date seed oil. Food Chem. 91(3), 469–476. https://doi.org/10.1016/j.foodchem.2004.04.037 (2005).

    Google Scholar 

  36. Morrison, W. R. & Smith, L. M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J. Lipid Res. 5(4), 600–608. https://doi.org/10.1016/s0022-2275(20)40190-7 (1964).

    Google Scholar 

  37. Braunegg, G., Lefebvre, G. & Genser, K. F. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol. 65(2), 127–161. https://doi.org/10.1016/S0168-1656(98)00126-6 (1998).

    Google Scholar 

  38. Brandl, H., Gross, R. A., Lenz, R. W. & Fuller, R. C. Plastics from bacteria and for bacteria: poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Microbial. Bioproducts https://doi.org/10.1007/BFb0010232 (1990).

    Google Scholar 

  39. Zainab-L, I. & Sudesh, K. High cell density culture of Cupriavidus necator H16 and improved biological recovery of polyhydroxyalkanoates using mealworms. J. Biotechnol. 305, 35–42. https://doi.org/10.1016/j.jbiotec.2019.09.001 (2019).

    Google Scholar 

  40. Zainab-L, I., Uyama, H., Li, C., Shen, Y. & Sudesh, K. Production of polyhydroxyalkanoates from underutilized plant oils by Cupriavidus necator. CLEAN – Soil, Air, Water. 46(11), 1700542. https://doi.org/10.1002/clen.201700542 (2018).

    Google Scholar 

  41. Tan, H. T. et al. Characterization of the polyhydroxyalkanoate (PHA) synthase from Ideonella sakaiensis, a bacterium that is capable of degrading and assimilating poly(ethylene terephthalate). Polym. Degrad. Stab. 206, 110160 (2022).

    Google Scholar 

  42. Liu, X. et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 12(8), e0182601. https://doi.org/10.1371/journal.pone.0182601 (2017).

    Google Scholar 

  43. Kim, Y. B. et al. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult Sci. 99(6), 3133–3143. https://doi.org/10.1016/j.psj.2020.01.018 (2020).

    Google Scholar 

  44. Smets, R., Goos, P., Claes, J. & Van Der Borght, M. Optimisation of the lipid extraction of fresh black soldier fly larvae (Hermetia illucens) with 2-methyltetrahydrofuran by response surface methodology. Sep. Purif. Technol. 258, 118040 (2021).

    Google Scholar 

  45. Tomberlin, J. K., Sheppard, D. C. & Joyce, J. A. Selected life-history traits of black soldier flies (diptera: stratiomyidae) reared on three artificial diets. Ann. Entomol. Soc. Am. 95(3), 379–386. https://doi.org/10.1603/0013-8746(2002)095 (2002).

    Google Scholar 

  46. Ramos-Bueno, R. P., González-Fernández, M. J., Sánchez-Muros-Lozano, M. J., García-Barroso, F. & Guil-Guerrero, J. L. Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. Eur. Food Res. Technol. 242(9), 1471–1477. https://doi.org/10.1007/s00217-016-2647-7 (2016).

    Google Scholar 

  47. Li, X. et al. Growth and fatty acid composition of black soldier fly Hermetia illucens (diptera: stratiomyidae) larvae are influenced by dietary fat sources and levels. Animals 12(4), 486 (2022).

    Google Scholar 

  48. Danieli, P. P., Lussiana, C., Gasco, L., Amici, A. & Ronchi, B. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens l.) prepupae intended for animal feed. Animals 9(4), 178. https://doi.org/10.3390/ani9040178 (2019).

    Google Scholar 

  49. Janssen, R. H., Vincken, J.-P., van den Broek, L. A. M., Fogliano, V. & Lakemond, C. M. M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 65(11), 2275–2278. https://doi.org/10.1021/acs.jafc.7b00471 (2017).

    Google Scholar 

  50. Ewald, N. et al. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—possibilities and limitations for modification through diet. Waste Manag. 102, 40–47 (2020).

    Google Scholar 

  51. Gao, Z. et al. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. J. Clean Prod. 230, 974–980. https://doi.org/10.1016/j.jclepro.2019.05.074 (2019).

    Google Scholar 

  52. Kawasaki, K. et al. Evaluation of black soldier Fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals 9(3), 98. https://doi.org/10.3390/ani9030098 (2019).

    Google Scholar 

  53. Cullere, M. et al. Hermetia illucens larvae reared on different substrates in broiler quail diets: effect on physicochemical and sensory quality of the quail meat. Animals 9(8), 525. https://doi.org/10.3390/ani9080525 (2019).

    Google Scholar 

  54. Siow, H. S., Sudesh, K., Murugan, P. & Ganesan, S. Mealworm (Tenebrio molitor) oil characterization and optimization of the free fatty acid pretreatment via acid-catalyzed esterification. Fuel 299, 120905. https://doi.org/10.1016/j.fuel.2021.120905 (2021).

    Google Scholar 

  55. Ushakova, N. A. et al. Characteristics of lipid fractions of larvae of the black soldier fly Hermetia illucens. Dokl Biochem. Biophys. 468(1), 209–212. https://doi.org/10.1134/s1607672916030145 (2016).

    Google Scholar 

  56. Tan, H. T. et al. Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants. Int. J. Biol. Macromol. 159, 250–257. https://doi.org/10.1016/j.ijbiomac.2020.05.064 (2020).

    Google Scholar 

  57. Akiyama, M., Tsuge, T. & Doi, Y. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stab. 80, 183–194 (2003).

    Google Scholar 

  58. Riedel, S. L. et al. Polyhydroxyalkanoates production with Ralstonia eutropha from low-quality waste animal fats. J. Biotechnol. 214, 119–127. https://doi.org/10.1016/j.jbiotec.2015.09.002 (2015).

    Google Scholar 

  59. Van Thuoc, D., My, D. N., Loan, T. T. & Sudesh, K. Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate production by Salinivibrio sp. M318. Int. J. Biol. Macromol. 141, 885–892. https://doi.org/10.1016/j.ijbiomac.2019.09.063 (2019).

    Google Scholar 

  60. Surendran, A. et al. Can polyhydroxyalkanoates be produced efficiently from waste plant and animal oils?. Front. Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00169 (2020).

    Google Scholar 

  61. Matsumoto, K. & Kageyama, Y. Increased production and molecular weight of artificial polyhydroxyalkanoate poly(2-hydroxybutyrate) above the glass transition temperature threshold. Front. Bioeng Biotechnol. 7, 177. https://doi.org/10.3389/fbioe.2019.00177 (2019).

    Google Scholar 

  62. Watanabe, T., He, Y., Fukuchi, T. & Inoue, Y. Comonomer compositional distribution and thermal characteristics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromol. Biosci. 1(2), 75–83 (2001).

    Google Scholar 

  63. Padermshoke, A. et al. Surface melting and crystallization behavior of polyhydroxyalkanoates studied by attenuated total reflection infrared spectroscopy. Polymer 45(19), 6547–6554. https://doi.org/10.1016/j.polymer.2004.07.051 (2004).

    Google Scholar 

  64. North, M. J. & Jenkins, M. J. The mechanisms of the secondary crystallisation process in polymers: A narrative review. Polymer 321, 128122. https://doi.org/10.1016/j.polymer.2025.128122 (2025).

    Google Scholar 

  65. Volova, T. G. et al. Effect of monomers of 3-hydroxyhexanoate on properties of copolymers poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polymers 15, 2890. https://doi.org/10.3390/polym15132890 (2023).

    Google Scholar 

  66. Baltieri, R. C., Innocentini Mei, L. H. & Bartoli, J. Study of the influence of plasticizers on the thermal and mechanical properties of poly(3-hydroxybutyrate) compounds. Macromol. Symp. 197(1), 33–44. https://doi.org/10.1002/masy.200350704 (2003).

    Google Scholar 

Download references