References
-
The United Nations. Sustainable development goals site. https://www.un.org/sustainabledevelopment/sustainable-consumption-production/
-
Moshood, T. D. et al. Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution?. Curr. Res. Green Sustain. Chem. 5, 100273 (2022).
-
Khanna, S. & Srivastava, A. K. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 40(2), 607–619. https://doi.org/10.1016/j.procbio.2004.01.053 (2005).
-
Sudesh, K. & Iwata, T. Sustainability of biobased and biodegradable plastics. CLEAN – Soil, Air, Water. 36(5–6), 433–442. https://doi.org/10.1002/clen.200700183 (2008).
-
Doi, Y., Segawa, A. & Kunioka, M. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int. J. Biol. Macromol. 12(2), 106–111. https://doi.org/10.1016/0141-8130(90)90061-e (1990).
-
Kahar, P., Tsuge, T., Taguchi, K. & Doi, Y. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad. Stab. 83(1), 79–86. https://doi.org/10.1016/S0141-3910(03)00227-1 (2004).
-
Chen, G. Q. Plastics from Bacteria: Natural Functions and Applications (Springer Berlin, Heidelberg 2010). https://doi.org/10.1007/978-3-642-03287-5.
-
Koller, M. et al. Polyhydroxyalkanoates from waste and surplus materials as a sustainable solution: challenges and opportunities. Biotechnol J. 8(6), 633–647. https://doi.org/10.1002/biot.201200499 (2013).
-
Murugan, P., Gan, C. Y. & Sudesh, K. Biosynthesis of P(3HB-co-3HHx) with improved molecular weights from a mixture of palm olein and fructose by Cupriavidus necator Re2058/pCB113. Int. J. Biol. Macromol. 102, 1112–1119. https://doi.org/10.1016/j.ijbiomac.2017.05.006 (2017).
-
Jiang, T. et al. Enhancing oil feedstock utilization for high-yield low-carbon polyhydroxyalkanoates industrial bioproduction. Metab. Eng. 91, 44–58. https://doi.org/10.1016/j.ymben.2025.04.001 (2025).
-
Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M. & Shah, S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol. Adv. 25(2), 148–175. https://doi.org/10.1016/j.biotechadv.2006.11.002 (2007).
-
Lee, W. H., Loo, C. Y., Nomura, C. T. & Sudesh, K. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour. Technol. 99(15), 6844–6851. https://doi.org/10.1016/j.biortech.2008.01.051 (2008).
-
Loo, C. Y., Lee, W. H., Tsuge, T., Doi, Y. & Sudesh, K. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol. Lett. 27(18), 1405–1410. https://doi.org/10.1007/s10529-005-0690-8 (2005).
-
Gui, M. M., Lee, K. T. & Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11), 1646–1653. https://doi.org/10.1016/j.energy.2008.06.002 (2008).
-
Lalander, C., Diener, S., Zurbrügg, C. & Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean Prod. 208, 211–219. https://doi.org/10.1016/j.jclepro.2018.10.017 (2019).
-
Sheppard, C., Newton, L., Thompson, S. & Savage, S. A. Value added manure management system using the black soldier fly. Bioresour. Technol. 50(3), 275–279. https://doi.org/10.1016/0960-8524(94)90117-1 (1994).
-
Wang, YS., & Shelomi, M. Review of black soldier fly ( Hermetia illucens) as animal feed and human food, Foods, https://doi.org/10.3390/foods6100091 (2017).
-
Ewusie, E. A. et al. The black soldier fly, Hermetia illucens (Diptera: Stratiomyidae): trapping and culturing of wild colonies in Ghana. Sci. Afr. https://doi.org/10.1016/j.sciaf.2019.e00134 (2019).
-
Gold, M., Tomberlin, J. K., Diener, S., Zurbrügg, C. & Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: a review. Waste Manag. 82, 302–318. https://doi.org/10.1016/j.wasman.2018.10.022 (2018).
-
Makkar, H. P. S., Tran, G., Heuzé, V. & Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 197, 1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008 (2014).
-
Surendra, K. C., Olivier, R., Nellemann, C. & Birkved, M. Rethinking organic wastes bioconversion: evaluating the potential of the black soldier fly (Hermetia illucens (l.)) (Diptera: Stratiomyidae) (BSF). Waste Manag. 117, 58–80. https://doi.org/10.1016/j.wasman.2020.07.050 (2020).
-
Wong, Y. M., Brigham, C. J., Rha, C., Sinskey, A. J. & Sudesh, K. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour Technol. 121, 320–327. https://doi.org/10.1016/j.biortech.2012.07.015 (2012).
-
Sato, S., Maruyama, H., Fujiki, T. & Matsumoto, K. Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate. J. Biosci. Bioeng. 120(3), 246–251. https://doi.org/10.1016/j.jbiosc.2015.01.016 (2015).
-
Ruiz, C., Kenny, S. T., Narancic, T., Babu, R. & Connor, O. K. Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. J. Biotechnol. 306, 9–15. https://doi.org/10.1016/j.jbiotec.2019.08.020 (2019).
-
Budde, C. F., Riedel, S. L., Willis, L. B., Rha, C. & Sinskey, A. J. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microbiol. 77(9), 2847–2854. https://doi.org/10.1128/AEM.02429-10 (2011).
-
Doi, Y., Kitamura, S. & Abe, H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14), 4822–4828. https://doi.org/10.1021/ma00118a007 (1995).
-
Bußler, S., Rumpold, B. A., Jander, E., Rawel, H. M. & Schlüter, O. K. Recovery and techno-functionality of flours and proteins from two edible insect species: mealworm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2(12), e00218. https://doi.org/10.1016/j.heliyon.2016.e00218 (2016).
-
Uğur, A. E., Bolat, B., Oztop, M. H. & Alpas, H. Effects of high hydrostatic pressure (hhp) processing and temperature on physicochemical characterization of insect oils extracted from Acheta domesticus (house cricket) and Tenebrio molitor (yellow mealworm). Waste Biomass Valor. https://doi.org/10.1007/s12649-020-01302-z (2020).
-
Zhao, X., Vázquez-Gutiérrez, J. L., Johansson, D. P., Landberg, R. & Langton, M. Yellow mealworm protein for food purposes—extraction and functional properties. PLoS ONE 11(2), e0147791. https://doi.org/10.1371/journal.pone.0147791 (2016).
-
Xu, Q. et al. Production and characterization of high-quality silkworm pupal oil for omega-3 fatty acid supplementation. Int. Food Res. J. 29, 540–551. https://doi.org/10.47836/ifrj.29.3.07 (2022).
-
Chee, J. Y., Tan, Y., Samian, M. R. & Sudesh, K. Isolation and characterization of a Burkholderia sp. USM (JCM15050.) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids, and glycerols. J. Polym. Environ. 18, 584–592. https://doi.org/10.1007/s10924-010-0204-1 (2010).
-
Barragán-Fonseca, K. B., Gort, G., Dicke, M. & van Loon, J. J. A. Effects of dietary protein and carbohydrate on life-history traits and body protein and fat contents of the black soldier fly. Physiol. Entomol. 44(2), 148–159. https://doi.org/10.1111/phen.12285 (2019).
-
Mai, H. C. et al. Purification process, physicochemical properties, and fatty acid composition of black soldier fly (Hermetia illucens Linnaeus) larvae oil. J. Am. Oil Chem. Soc. 96(11), 1303–1311. https://doi.org/10.1002/aocs.12263 (2019).
-
AOAC. Official methods of analysis, 17th ed. The association of official analytical chemists. (2000).
-
Besbes, S. et al. Heating effects on some quality characteristics of date seed oil. Food Chem. 91(3), 469–476. https://doi.org/10.1016/j.foodchem.2004.04.037 (2005).
-
Morrison, W. R. & Smith, L. M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J. Lipid Res. 5(4), 600–608. https://doi.org/10.1016/s0022-2275(20)40190-7 (1964).
-
Braunegg, G., Lefebvre, G. & Genser, K. F. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol. 65(2), 127–161. https://doi.org/10.1016/S0168-1656(98)00126-6 (1998).
-
Brandl, H., Gross, R. A., Lenz, R. W. & Fuller, R. C. Plastics from bacteria and for bacteria: poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Microbial. Bioproducts https://doi.org/10.1007/BFb0010232 (1990).
-
Zainab-L, I. & Sudesh, K. High cell density culture of Cupriavidus necator H16 and improved biological recovery of polyhydroxyalkanoates using mealworms. J. Biotechnol. 305, 35–42. https://doi.org/10.1016/j.jbiotec.2019.09.001 (2019).
-
Zainab-L, I., Uyama, H., Li, C., Shen, Y. & Sudesh, K. Production of polyhydroxyalkanoates from underutilized plant oils by Cupriavidus necator. CLEAN – Soil, Air, Water. 46(11), 1700542. https://doi.org/10.1002/clen.201700542 (2018).
-
Tan, H. T. et al. Characterization of the polyhydroxyalkanoate (PHA) synthase from Ideonella sakaiensis, a bacterium that is capable of degrading and assimilating poly(ethylene terephthalate). Polym. Degrad. Stab. 206, 110160 (2022).
-
Liu, X. et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 12(8), e0182601. https://doi.org/10.1371/journal.pone.0182601 (2017).
-
Kim, Y. B. et al. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult Sci. 99(6), 3133–3143. https://doi.org/10.1016/j.psj.2020.01.018 (2020).
-
Smets, R., Goos, P., Claes, J. & Van Der Borght, M. Optimisation of the lipid extraction of fresh black soldier fly larvae (Hermetia illucens) with 2-methyltetrahydrofuran by response surface methodology. Sep. Purif. Technol. 258, 118040 (2021).
-
Tomberlin, J. K., Sheppard, D. C. & Joyce, J. A. Selected life-history traits of black soldier flies (diptera: stratiomyidae) reared on three artificial diets. Ann. Entomol. Soc. Am. 95(3), 379–386. https://doi.org/10.1603/0013-8746(2002)095 (2002).
-
Ramos-Bueno, R. P., González-Fernández, M. J., Sánchez-Muros-Lozano, M. J., García-Barroso, F. & Guil-Guerrero, J. L. Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. Eur. Food Res. Technol. 242(9), 1471–1477. https://doi.org/10.1007/s00217-016-2647-7 (2016).
-
Li, X. et al. Growth and fatty acid composition of black soldier fly Hermetia illucens (diptera: stratiomyidae) larvae are influenced by dietary fat sources and levels. Animals 12(4), 486 (2022).
-
Danieli, P. P., Lussiana, C., Gasco, L., Amici, A. & Ronchi, B. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens l.) prepupae intended for animal feed. Animals 9(4), 178. https://doi.org/10.3390/ani9040178 (2019).
-
Janssen, R. H., Vincken, J.-P., van den Broek, L. A. M., Fogliano, V. & Lakemond, C. M. M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 65(11), 2275–2278. https://doi.org/10.1021/acs.jafc.7b00471 (2017).
-
Ewald, N. et al. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—possibilities and limitations for modification through diet. Waste Manag. 102, 40–47 (2020).
-
Gao, Z. et al. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. J. Clean Prod. 230, 974–980. https://doi.org/10.1016/j.jclepro.2019.05.074 (2019).
-
Kawasaki, K. et al. Evaluation of black soldier Fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals 9(3), 98. https://doi.org/10.3390/ani9030098 (2019).
-
Cullere, M. et al. Hermetia illucens larvae reared on different substrates in broiler quail diets: effect on physicochemical and sensory quality of the quail meat. Animals 9(8), 525. https://doi.org/10.3390/ani9080525 (2019).
-
Siow, H. S., Sudesh, K., Murugan, P. & Ganesan, S. Mealworm (Tenebrio molitor) oil characterization and optimization of the free fatty acid pretreatment via acid-catalyzed esterification. Fuel 299, 120905. https://doi.org/10.1016/j.fuel.2021.120905 (2021).
-
Ushakova, N. A. et al. Characteristics of lipid fractions of larvae of the black soldier fly Hermetia illucens. Dokl Biochem. Biophys. 468(1), 209–212. https://doi.org/10.1134/s1607672916030145 (2016).
-
Tan, H. T. et al. Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants. Int. J. Biol. Macromol. 159, 250–257. https://doi.org/10.1016/j.ijbiomac.2020.05.064 (2020).
-
Akiyama, M., Tsuge, T. & Doi, Y. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stab. 80, 183–194 (2003).
-
Riedel, S. L. et al. Polyhydroxyalkanoates production with Ralstonia eutropha from low-quality waste animal fats. J. Biotechnol. 214, 119–127. https://doi.org/10.1016/j.jbiotec.2015.09.002 (2015).
-
Van Thuoc, D., My, D. N., Loan, T. T. & Sudesh, K. Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate production by Salinivibrio sp. M318. Int. J. Biol. Macromol. 141, 885–892. https://doi.org/10.1016/j.ijbiomac.2019.09.063 (2019).
-
Surendran, A. et al. Can polyhydroxyalkanoates be produced efficiently from waste plant and animal oils?. Front. Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00169 (2020).
-
Matsumoto, K. & Kageyama, Y. Increased production and molecular weight of artificial polyhydroxyalkanoate poly(2-hydroxybutyrate) above the glass transition temperature threshold. Front. Bioeng Biotechnol. 7, 177. https://doi.org/10.3389/fbioe.2019.00177 (2019).
-
Watanabe, T., He, Y., Fukuchi, T. & Inoue, Y. Comonomer compositional distribution and thermal characteristics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromol. Biosci. 1(2), 75–83 (2001).
-
Padermshoke, A. et al. Surface melting and crystallization behavior of polyhydroxyalkanoates studied by attenuated total reflection infrared spectroscopy. Polymer 45(19), 6547–6554. https://doi.org/10.1016/j.polymer.2004.07.051 (2004).
-
North, M. J. & Jenkins, M. J. The mechanisms of the secondary crystallisation process in polymers: A narrative review. Polymer 321, 128122. https://doi.org/10.1016/j.polymer.2025.128122 (2025).
-
Volova, T. G. et al. Effect of monomers of 3-hydroxyhexanoate on properties of copolymers poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polymers 15, 2890. https://doi.org/10.3390/polym15132890 (2023).
-
Baltieri, R. C., Innocentini Mei, L. H. & Bartoli, J. Study of the influence of plasticizers on the thermal and mechanical properties of poly(3-hydroxybutyrate) compounds. Macromol. Symp. 197(1), 33–44. https://doi.org/10.1002/masy.200350704 (2003).
