Bovine serum albumin nanoparticles improve bacteriophage stability and antimicrobial activity against Pseudomonas aeruginosa

bovine-serum-albumin-nanoparticles-improve-bacteriophage-stability-and-antimicrobial-activity-against-pseudomonas-aeruginosa
Bovine serum albumin nanoparticles improve bacteriophage stability and antimicrobial activity against Pseudomonas aeruginosa

References

  1. Burrows, L. L. The Therapeutic Pipeline for Pseudomonas Aeruginosa Infections. ACS Infect Dis p. 1041–1047 (American Chemical Society, 2018). https://doi.org/10.1021/acsinfecdis.8b00112

  2. Chatterjee, M. et al. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. International Journal of Medical Microbiology. Elsevier GmbH; pp. 48–58. (2016). https://doi.org/10.1016/j.ijmm.2015.11.004

  3. Chen, F. et al. Novel lytic phages protect cells and mice against Pseudomonas aeruginosa infection. J. Virol. Am. Soc. Microbiol. 95. https://doi.org/10.1128/jvi.01832-20 (2021).

  4. Simner, P. J. et al. Combination of phage therapy and Cefiderocol to successfully treat Pseudomonas aeruginosa cranial osteomyelitis. JAC Antimicrob Resist. Oxford University Press; ;4. https://doi.org/10.1093/jacamr/dlac046 (2022).

  5. Duplessis, C., Warawa, J. M., Lawrenz, M. B., Henry, M. & Biswas, B. Successful intratracheal treatment of phage and antibiotic combination therapy of a multi-drug resistant Pseudomonas aeruginosa murine model. Antibiot. MDPI AG. 10. https://doi.org/10.3390/antibiotics10080946 (2021).

  6. Cieplak, T., Soffer, N., Sulakvelidze, A. & Nielsen, D. S. A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes Taylor Francis Inc. 9, 391–399. https://doi.org/10.1080/19490976.2018.1447291 (2018).

    Google Scholar 

  7. Guo, Z., Yuan, M. & Chai, J. Mini Review Advantages and Limitations of Lytic Phages Compared with Chemical Antibiotics To Combat Bacterial infections. Heliyon (Elsevier Ltd, 2024). https://doi.org/10.1016/j.heliyon.2024.e34849

  8. Jończyk, E., Kłak, M., Międzybrodzki, R. & Górski, A. The Influence of External Factors on bacteriophages-review. Folia Microbiol (Praha) p. 191–200 (Kluwer Academic, 2011). https://doi.org/10.1007/s12223-011-0039-8

  9. Dąbrowska, K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev. John Wiley and Sons Inc.; pp. 2000–25. (2019). https://doi.org/10.1002/med.21572

  10. Kim, S., Jo, A. & Ahn, J. Application of chitosan-alginate microspheres for the sustained release of bacteriophage in simulated Gastrointestinal conditions. Int. J. Food Sci. Technol. 50, 913–918. https://doi.org/10.1111/ijfs.12736 (2015).

    Google Scholar 

  11. Ahmad, K. A., Mohammed, A. S. & Abas, F. Chitosan nanoparticles as carriers for the delivery of FKAZ14 bacteriophage for oral biological control of colibacillosis in chickens. Molecules MDPI AG. 21. https://doi.org/10.3390/molecules21030256 (2016).

  12. Elsayed, M. M. et al. Isolation and encapsulation of bacteriophage with Chitosan nanoparticles for biocontrol of multidrug-resistant methicillin-resistant Staphylococcus aureus isolated from broiler poultry farms. Sci. Rep. Nat. Res. 14. https://doi.org/10.1038/s41598-024-55114-5 (2024).

  13. Wang, L. et al. Phage-liposome nanoconjugates for orthopedic biofilm eradication. J. Controlled Release Elsevier B V. 376, 949–960. https://doi.org/10.1016/j.jconrel.2024.09.049 (2024).

    Google Scholar 

  14. Szymczak, M. et al. An effective antibiofilm strategy based on bacteriophages armed with silver nanoparticles. Sci. Rep. Nat. Res. 14. https://doi.org/10.1038/s41598-024-59866-y (2024).

  15. Swidan, N. S., Hashem, Y. A., Elkhatib, W. F. & Yassien, M. A. Antibiofilm activity of green synthesized silver nanoparticles against biofilm associated enterococcal urinary pathogens. Sci. Rep. Nat. Res. 12. https://doi.org/10.1038/s41598-022-07831-y (2022).

  16. Shafigh Kheljan, F. et al. Design of Phage-Cocktail–Containing Hydrogel for the Treatment of Pseudomonas aeruginosa–Infected Wounds. Viruses 15 (Multidisciplinary Digital Publishing Institute (MDPI), 2023). https://doi.org/10.3390/v15030803

  17. Shen, H. Y. et al. Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J. Controlled Release Elsevier B V. 331, 154–163. https://doi.org/10.1016/j.jconrel.2021.01.024 (2021).

    Google Scholar 

  18. Jończyk-Matysiak, E. et al. Factors Determining Phage stability/activity: Challenges in Practical Phage application. Expert Rev Anti Infect Ther p. 583–606 (Taylor and Francis Ltd, 2019). https://doi.org/10.1080/14787210.2019.1646126

  19. Kouchakzadeh, H., Safavi, M. S. & Shojaosadati, S. A. Efficient Delivery of Therapeutic Agents by Using Targeted Albumin Nanoparticles. Adv Protein Chem Struct Biol p. 121–143 (Academic Press Inc., 2015). https://doi.org/10.1016/bs.apcsb.2014.11.002

  20. Shen, X. et al. Recent advancements in serum Albumin-Based nanovehicles toward potential cancer diagnosis and therapy. Front. Chem. Front. Media S A. https://doi.org/10.3389/fchem.2021.746646 (2021).

    Google Scholar 

  21. Srivastava, A. & Prajapati, A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. Asian Biomed. Sciendo. 217–242. https://doi.org/10.1515/abm-2020-0032 (2020).

  22. Qu, N. et al. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine. Dove Medical Press Ltd; pp. 6945–80. (2024). https://doi.org/10.2147/IJN.S467876

  23. Lamichhane, S. & Lee, S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res. Pharm. Soc. Korea. 118–133. https://doi.org/10.1007/s12272-020-01204-7 (2020).

  24. Kiarashi, M. & Yasamineh, S. Albumin nanoparticles are a promising drug delivery system in dentistry. Biomed. Eng. Online BioMed. Cent. Ltd. https://doi.org/10.1186/s12938-024-01318-9 (2024).

    Google Scholar 

  25. O’Connell, L., Roupioz, Y. & Marcoux, P. R. Container material dictates stability of bacteriophage suspensions: light scattering and infectivity measurements reveal mechanisms of infectious titre decay. J. Appl. Microbiol. John Wiley Sons Inc. 133, 529–543. https://doi.org/10.1111/jam.15581 (2022).

    Google Scholar 

  26. Wdowiak, M., Paczesny, J. & Raza, S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics (MDPI, 2022). https://doi.org/10.3390/pharmaceutics14091936

  27. Coelho, L. F. L. et al. Mucosal-adapted bacteriophages as a preventive strategy for a lethal Pseudomonas aeruginosa challenge in mice. Commun. Biol. Nat. Res. 8. https://doi.org/10.1038/s42003-024-07269-0 (2025).

  28. Rodrigues, N. F. et al. Bovine serum albumin nanoparticle vaccine reduces lung pathology induced by live Pseudomonas aeruginosa infection in mice. Vaccine 31, 5062–5066. https://doi.org/10.1016/j.vaccine.2013.08.078 (2013).

    Google Scholar 

  29. Dell, R. B., Holleran, S. & Ramakrishnan, R. Sample Size Determination [Internet]. http://www.ruf.rice.edu/~lane/rvls.html

  30. Sader, H. S., Castanheira, M., Duncan, L. R. & Flamm, R. K. Antimicrobial susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa isolates from united States medical centers stratified by infection type: results from the international network for optimal resistance monitoring (INFORM) surveillance Program, 2015–2016. Diagn. Microbiol. Infect. Dis. Elsevier Inc. 92, 69–74. https://doi.org/10.1016/j.diagmicrobio.2018.04.012 (2018).

    Google Scholar 

  31. Fernández, L. & Hancock, R. E. W. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25, 661–681. https://doi.org/10.1128/CMR.00043-12 (2012).

    Google Scholar 

  32. Qin, S. et al. Pseudomonas Aeruginosa: pathogenesis, Virulence factors, Antibiotic resistance, Interaction with host, Technology Advances and Emerging therapeutics. Signal Transduct Target Ther (Springer Nature, 2022). https://doi.org/10.1038/s41392-022-01056-1

  33. Schwartz, B., Klamer, K., Zimmerman, J., Kale-Pradhan, P. B. & Bhargava, A. Multidrug Resistant Pseudomonas Aeruginosa in Clinical Settings: A Review of Resistance Mechanisms and Treatment Strategies. Pathogens (Multidisciplinary Digital Publishing Institute (MDPI), 2024). https://doi.org/10.3390/pathogens13110975

  34. Elfadadny, A. et al. Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front. Microbiol. Front. Media SA. https://doi.org/10.3389/fmicb.2024.1374466 (2024).

    Google Scholar 

  35. World Health Organization. Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. (2024).

  36. Liu, S., Lu, H., Zhang, S., Shi, Y. & Chen, Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics (MDPI, 2022). https://doi.org/10.3390/pharmaceutics14020427

  37. Lin, J., Du, F., Long, M. & Li, P. Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review (Molecules. MDPI;, 2022). https://doi.org/10.3390/molecules27061857

  38. Principi, N., Silvestri, E. & Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. Front. Media S A. https://doi.org/10.3389/fphar.2019.00513 (2019).

    Google Scholar 

  39. Marcó, M. B., De Antoni, G. L., Reinheimer, J. A. & Quiberoni, A. Thermal, Chemical, and Photocatalytic Inactivation of Lactobacillus plantarum Bacteriophages. J. Food Prot. 72, 1012–1019. https://doi.org/10.4315/0362-028x-72.5.1012 (2009).

    Google Scholar 

  40. Pires, D. P., Costa, A. R., Pinto, G., Meneses, L. & Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev. Oxford University Press; 684–700. https://doi.org/10.1093/femsre/fuaa017 (2020).

  41. Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. Lancet Publishing Group. 19, 35–45. https://doi.org/10.1016/S1473-3099(18)30482-1 (2019).

    Google Scholar 

  42. Yeh, Y. C., Huang, T. H., Yang, S. C., Chen, C. C. & Fang, J. Y. Nano-Based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front. Chem. Front. Media S A. https://doi.org/10.3389/fchem.2020.00286 (2020).

    Google Scholar 

  43. Paczesny, J. & Bielec, K. Application of Bacteriophages in nanotechnology. Nanomaterials p. 1–25 (MDPI AG, 2020). https://doi.org/10.3390/nano10101944

  44. Kaur, S. et al. Nanotechnology based approaches in phage therapy: overcoming the Pharmacological barriers. Front. Pharmacol. Front. Media S A. https://doi.org/10.3389/fphar.2021.699054 (2021).

    Google Scholar 

  45. Hosseini, M. S., Moosavi-Nejad, Z. & Mohammadi, P. A new nanobiotic: synthesis and characterization of an albumin nanoparticle with intrinsic antibiotic activity. Iran. J. Microbiol. [Internet]. 15, 697–704. https://doi.org/10.18502/ijm.v15i5.13875 (2023).

    Google Scholar 

  46. Najeeb, S. et al. Characterization and genomic analysis of a herelleviridae bacteriophage UHP46 infecting mastitis-causing Staphylococcus aureus. Front. Microbiol. Front. Media SA. 16. https://doi.org/10.3389/fmicb.2025.1496919 (2025).

  47. Olofsson, L., Ankarloo, J., Andersson, O. & Nicholls, I. A. Filamentous bacteriophage stability in non-aqueous media [Internet]. www.elsevier.com/locate/chembiol

  48. Yamashita, M., Murahashi, H., Tomita, T. & Hirata, A. Effect of alcohols on Escherichia coil phages. Biocontrol Sci. 5, 9-16. https://doi.org/10.4265/bio.5.9 (2000).

    Google Scholar 

  49. Zhou, Y. et al. Encapsulation of Salmonella phage SL01 in alginate/carrageenan microcapsules as a delivery system and its application in vitro. Front. Microbiol. Front. Media S A. 13. https://doi.org/10.3389/fmicb.2022.906103 (2022).

  50. Stachurska, X. et al. Nanoparticles influence lytic phage T4-like performance in vitro. Int. J. Mol. Sci. MDPI. 23. https://doi.org/10.3390/ijms23137179 (2022).

  51. Dutta Sinha, S., Chatterjee, S., Maiti, P. K., Tarafdar, S. & Moulik, S. P. Evaluation of the role of substrate and albumin on Pseudomonas aeruginosa biofilm morphology through FESEM and FTIR studies on polymeric biomaterials. Prog Biomater. SpringerOpen. 6, 27–38. https://doi.org/10.1007/s40204-017-0061-2 (2017).

    Google Scholar 

  52. Engel, L. S. et al. A unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J. Biol. Chem. 273, 16792–16797. https://doi.org/10.1074/jbc.273.27.16792 (1998).

    Google Scholar 

  53. Galdino, A. C. M., Branquinha, M. H., Santos, A. L. S. & Viganor, L. Pseudomonas Aeruginosa and its Arsenal of Proteases: Weapons To Battle the host. Pathophysiological Aspects of Proteases p. 381–397 (Springer Singapore, 2017). https://doi.org/10.1007/978-981-10-6141-7_16

  54. Hafeez, Z. et al. Study on Rapeseed Albumin Hydrolysis by PrtS Protease from Streptococcus Thermophilus and Bioactivity Characterization of Resulting Hydrolysates. Foods 14 (Multidisciplinary Digital Publishing Institute (MDPI), 2025). https://doi.org/10.3390/foods14132235

  55. Xu, Y. et al. Injectable Phage-Loaded microparticles effectively release phages to kill Methicillin-Resistant Staphylococcus aureus. ACS Appl. Mater. Interfaces Am. Chem. Soc. 16, 17232–17241. https://doi.org/10.1021/acsami.3c19443 (2024).

    Google Scholar 

  56. Van Heeckeren, A. M., Schluchter, M. D., Xue, W. & Davis, P. B. Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am. J. Respir Crit. Care Med. 173, 288–296. https://doi.org/10.1164/rccm.200506-917OC (2006).

    Google Scholar 

  57. Köhler, T. et al. Personalized aerosolised bacteriophage treatment of a chronic lung infection due to multidrug-resistant Pseudomonas aeruginosa. Nat. Commun. Nat. Res. 14. https://doi.org/10.1038/s41467-023-39370-z (2023).

  58. Pragman, A. A., Berger, J. P. & Williams, B. J. Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms. Clin. Pulm Med. Lippincott Williams Wilkins. 23, 57–66. https://doi.org/10.1097/CPM.0000000000000108 (2016).

    Google Scholar 

  59. Forti, F. et al. Design of a broad-range Bacteriophage Cocktail that Reduces Pseudomonas Aeruginosa Biofilms and Treats Acute Infections in Two Animal Models 62 (Antimicrob Agents Chemother. American Society for Microbiology, 2018). https://doi.org/10.1128/AAC.02573-17

  60. Waters, E. M. et al. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax BMJ Publishing Group. 72, 666–667. https://doi.org/10.1136/thoraxjnl-2016-209265 (2017).

    Google Scholar 

  61. Colom, J. et al. Microencapsulation with alginate/CaCO 3: A strategy for improved phage therapy. Sci. Rep. Nat. Publishing Group. 7. https://doi.org/10.1038/srep41441 (2017).

Download references