References
-
Burrows, L. L. The Therapeutic Pipeline for Pseudomonas Aeruginosa Infections. ACS Infect Dis p. 1041–1047 (American Chemical Society, 2018). https://doi.org/10.1021/acsinfecdis.8b00112
-
Chatterjee, M. et al. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. International Journal of Medical Microbiology. Elsevier GmbH; pp. 48–58. (2016). https://doi.org/10.1016/j.ijmm.2015.11.004
-
Chen, F. et al. Novel lytic phages protect cells and mice against Pseudomonas aeruginosa infection. J. Virol. Am. Soc. Microbiol. 95. https://doi.org/10.1128/jvi.01832-20 (2021).
-
Simner, P. J. et al. Combination of phage therapy and Cefiderocol to successfully treat Pseudomonas aeruginosa cranial osteomyelitis. JAC Antimicrob Resist. Oxford University Press; ;4. https://doi.org/10.1093/jacamr/dlac046 (2022).
-
Duplessis, C., Warawa, J. M., Lawrenz, M. B., Henry, M. & Biswas, B. Successful intratracheal treatment of phage and antibiotic combination therapy of a multi-drug resistant Pseudomonas aeruginosa murine model. Antibiot. MDPI AG. 10. https://doi.org/10.3390/antibiotics10080946 (2021).
-
Cieplak, T., Soffer, N., Sulakvelidze, A. & Nielsen, D. S. A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes Taylor Francis Inc. 9, 391–399. https://doi.org/10.1080/19490976.2018.1447291 (2018).
-
Guo, Z., Yuan, M. & Chai, J. Mini Review Advantages and Limitations of Lytic Phages Compared with Chemical Antibiotics To Combat Bacterial infections. Heliyon (Elsevier Ltd, 2024). https://doi.org/10.1016/j.heliyon.2024.e34849
-
Jończyk, E., Kłak, M., Międzybrodzki, R. & Górski, A. The Influence of External Factors on bacteriophages-review. Folia Microbiol (Praha) p. 191–200 (Kluwer Academic, 2011). https://doi.org/10.1007/s12223-011-0039-8
-
Dąbrowska, K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev. John Wiley and Sons Inc.; pp. 2000–25. (2019). https://doi.org/10.1002/med.21572
-
Kim, S., Jo, A. & Ahn, J. Application of chitosan-alginate microspheres for the sustained release of bacteriophage in simulated Gastrointestinal conditions. Int. J. Food Sci. Technol. 50, 913–918. https://doi.org/10.1111/ijfs.12736 (2015).
-
Ahmad, K. A., Mohammed, A. S. & Abas, F. Chitosan nanoparticles as carriers for the delivery of FKAZ14 bacteriophage for oral biological control of colibacillosis in chickens. Molecules MDPI AG. 21. https://doi.org/10.3390/molecules21030256 (2016).
-
Elsayed, M. M. et al. Isolation and encapsulation of bacteriophage with Chitosan nanoparticles for biocontrol of multidrug-resistant methicillin-resistant Staphylococcus aureus isolated from broiler poultry farms. Sci. Rep. Nat. Res. 14. https://doi.org/10.1038/s41598-024-55114-5 (2024).
-
Wang, L. et al. Phage-liposome nanoconjugates for orthopedic biofilm eradication. J. Controlled Release Elsevier B V. 376, 949–960. https://doi.org/10.1016/j.jconrel.2024.09.049 (2024).
-
Szymczak, M. et al. An effective antibiofilm strategy based on bacteriophages armed with silver nanoparticles. Sci. Rep. Nat. Res. 14. https://doi.org/10.1038/s41598-024-59866-y (2024).
-
Swidan, N. S., Hashem, Y. A., Elkhatib, W. F. & Yassien, M. A. Antibiofilm activity of green synthesized silver nanoparticles against biofilm associated enterococcal urinary pathogens. Sci. Rep. Nat. Res. 12. https://doi.org/10.1038/s41598-022-07831-y (2022).
-
Shafigh Kheljan, F. et al. Design of Phage-Cocktail–Containing Hydrogel for the Treatment of Pseudomonas aeruginosa–Infected Wounds. Viruses 15 (Multidisciplinary Digital Publishing Institute (MDPI), 2023). https://doi.org/10.3390/v15030803
-
Shen, H. Y. et al. Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J. Controlled Release Elsevier B V. 331, 154–163. https://doi.org/10.1016/j.jconrel.2021.01.024 (2021).
-
Jończyk-Matysiak, E. et al. Factors Determining Phage stability/activity: Challenges in Practical Phage application. Expert Rev Anti Infect Ther p. 583–606 (Taylor and Francis Ltd, 2019). https://doi.org/10.1080/14787210.2019.1646126
-
Kouchakzadeh, H., Safavi, M. S. & Shojaosadati, S. A. Efficient Delivery of Therapeutic Agents by Using Targeted Albumin Nanoparticles. Adv Protein Chem Struct Biol p. 121–143 (Academic Press Inc., 2015). https://doi.org/10.1016/bs.apcsb.2014.11.002
-
Shen, X. et al. Recent advancements in serum Albumin-Based nanovehicles toward potential cancer diagnosis and therapy. Front. Chem. Front. Media S A. https://doi.org/10.3389/fchem.2021.746646 (2021).
-
Srivastava, A. & Prajapati, A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. Asian Biomed. Sciendo. 217–242. https://doi.org/10.1515/abm-2020-0032 (2020).
-
Qu, N. et al. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine. Dove Medical Press Ltd; pp. 6945–80. (2024). https://doi.org/10.2147/IJN.S467876
-
Lamichhane, S. & Lee, S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res. Pharm. Soc. Korea. 118–133. https://doi.org/10.1007/s12272-020-01204-7 (2020).
-
Kiarashi, M. & Yasamineh, S. Albumin nanoparticles are a promising drug delivery system in dentistry. Biomed. Eng. Online BioMed. Cent. Ltd. https://doi.org/10.1186/s12938-024-01318-9 (2024).
-
O’Connell, L., Roupioz, Y. & Marcoux, P. R. Container material dictates stability of bacteriophage suspensions: light scattering and infectivity measurements reveal mechanisms of infectious titre decay. J. Appl. Microbiol. John Wiley Sons Inc. 133, 529–543. https://doi.org/10.1111/jam.15581 (2022).
-
Wdowiak, M., Paczesny, J. & Raza, S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics (MDPI, 2022). https://doi.org/10.3390/pharmaceutics14091936
-
Coelho, L. F. L. et al. Mucosal-adapted bacteriophages as a preventive strategy for a lethal Pseudomonas aeruginosa challenge in mice. Commun. Biol. Nat. Res. 8. https://doi.org/10.1038/s42003-024-07269-0 (2025).
-
Rodrigues, N. F. et al. Bovine serum albumin nanoparticle vaccine reduces lung pathology induced by live Pseudomonas aeruginosa infection in mice. Vaccine 31, 5062–5066. https://doi.org/10.1016/j.vaccine.2013.08.078 (2013).
-
Dell, R. B., Holleran, S. & Ramakrishnan, R. Sample Size Determination [Internet]. http://www.ruf.rice.edu/~lane/rvls.html
-
Sader, H. S., Castanheira, M., Duncan, L. R. & Flamm, R. K. Antimicrobial susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa isolates from united States medical centers stratified by infection type: results from the international network for optimal resistance monitoring (INFORM) surveillance Program, 2015–2016. Diagn. Microbiol. Infect. Dis. Elsevier Inc. 92, 69–74. https://doi.org/10.1016/j.diagmicrobio.2018.04.012 (2018).
-
Fernández, L. & Hancock, R. E. W. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25, 661–681. https://doi.org/10.1128/CMR.00043-12 (2012).
-
Qin, S. et al. Pseudomonas Aeruginosa: pathogenesis, Virulence factors, Antibiotic resistance, Interaction with host, Technology Advances and Emerging therapeutics. Signal Transduct Target Ther (Springer Nature, 2022). https://doi.org/10.1038/s41392-022-01056-1
-
Schwartz, B., Klamer, K., Zimmerman, J., Kale-Pradhan, P. B. & Bhargava, A. Multidrug Resistant Pseudomonas Aeruginosa in Clinical Settings: A Review of Resistance Mechanisms and Treatment Strategies. Pathogens (Multidisciplinary Digital Publishing Institute (MDPI), 2024). https://doi.org/10.3390/pathogens13110975
-
Elfadadny, A. et al. Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front. Microbiol. Front. Media SA. https://doi.org/10.3389/fmicb.2024.1374466 (2024).
-
World Health Organization. Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. (2024).
-
Liu, S., Lu, H., Zhang, S., Shi, Y. & Chen, Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics (MDPI, 2022). https://doi.org/10.3390/pharmaceutics14020427
-
Lin, J., Du, F., Long, M. & Li, P. Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review (Molecules. MDPI;, 2022). https://doi.org/10.3390/molecules27061857
-
Principi, N., Silvestri, E. & Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. Front. Media S A. https://doi.org/10.3389/fphar.2019.00513 (2019).
-
Marcó, M. B., De Antoni, G. L., Reinheimer, J. A. & Quiberoni, A. Thermal, Chemical, and Photocatalytic Inactivation of Lactobacillus plantarum Bacteriophages. J. Food Prot. 72, 1012–1019. https://doi.org/10.4315/0362-028x-72.5.1012 (2009).
-
Pires, D. P., Costa, A. R., Pinto, G., Meneses, L. & Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev. Oxford University Press; 684–700. https://doi.org/10.1093/femsre/fuaa017 (2020).
-
Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. Lancet Publishing Group. 19, 35–45. https://doi.org/10.1016/S1473-3099(18)30482-1 (2019).
-
Yeh, Y. C., Huang, T. H., Yang, S. C., Chen, C. C. & Fang, J. Y. Nano-Based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front. Chem. Front. Media S A. https://doi.org/10.3389/fchem.2020.00286 (2020).
-
Paczesny, J. & Bielec, K. Application of Bacteriophages in nanotechnology. Nanomaterials p. 1–25 (MDPI AG, 2020). https://doi.org/10.3390/nano10101944
-
Kaur, S. et al. Nanotechnology based approaches in phage therapy: overcoming the Pharmacological barriers. Front. Pharmacol. Front. Media S A. https://doi.org/10.3389/fphar.2021.699054 (2021).
-
Hosseini, M. S., Moosavi-Nejad, Z. & Mohammadi, P. A new nanobiotic: synthesis and characterization of an albumin nanoparticle with intrinsic antibiotic activity. Iran. J. Microbiol. [Internet]. 15, 697–704. https://doi.org/10.18502/ijm.v15i5.13875 (2023).
-
Najeeb, S. et al. Characterization and genomic analysis of a herelleviridae bacteriophage UHP46 infecting mastitis-causing Staphylococcus aureus. Front. Microbiol. Front. Media SA. 16. https://doi.org/10.3389/fmicb.2025.1496919 (2025).
-
Olofsson, L., Ankarloo, J., Andersson, O. & Nicholls, I. A. Filamentous bacteriophage stability in non-aqueous media [Internet]. www.elsevier.com/locate/chembiol
-
Yamashita, M., Murahashi, H., Tomita, T. & Hirata, A. Effect of alcohols on Escherichia coil phages. Biocontrol Sci. 5, 9-16. https://doi.org/10.4265/bio.5.9 (2000).
-
Zhou, Y. et al. Encapsulation of Salmonella phage SL01 in alginate/carrageenan microcapsules as a delivery system and its application in vitro. Front. Microbiol. Front. Media S A. 13. https://doi.org/10.3389/fmicb.2022.906103 (2022).
-
Stachurska, X. et al. Nanoparticles influence lytic phage T4-like performance in vitro. Int. J. Mol. Sci. MDPI. 23. https://doi.org/10.3390/ijms23137179 (2022).
-
Dutta Sinha, S., Chatterjee, S., Maiti, P. K., Tarafdar, S. & Moulik, S. P. Evaluation of the role of substrate and albumin on Pseudomonas aeruginosa biofilm morphology through FESEM and FTIR studies on polymeric biomaterials. Prog Biomater. SpringerOpen. 6, 27–38. https://doi.org/10.1007/s40204-017-0061-2 (2017).
-
Engel, L. S. et al. A unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J. Biol. Chem. 273, 16792–16797. https://doi.org/10.1074/jbc.273.27.16792 (1998).
-
Galdino, A. C. M., Branquinha, M. H., Santos, A. L. S. & Viganor, L. Pseudomonas Aeruginosa and its Arsenal of Proteases: Weapons To Battle the host. Pathophysiological Aspects of Proteases p. 381–397 (Springer Singapore, 2017). https://doi.org/10.1007/978-981-10-6141-7_16
-
Hafeez, Z. et al. Study on Rapeseed Albumin Hydrolysis by PrtS Protease from Streptococcus Thermophilus and Bioactivity Characterization of Resulting Hydrolysates. Foods 14 (Multidisciplinary Digital Publishing Institute (MDPI), 2025). https://doi.org/10.3390/foods14132235
-
Xu, Y. et al. Injectable Phage-Loaded microparticles effectively release phages to kill Methicillin-Resistant Staphylococcus aureus. ACS Appl. Mater. Interfaces Am. Chem. Soc. 16, 17232–17241. https://doi.org/10.1021/acsami.3c19443 (2024).
-
Van Heeckeren, A. M., Schluchter, M. D., Xue, W. & Davis, P. B. Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am. J. Respir Crit. Care Med. 173, 288–296. https://doi.org/10.1164/rccm.200506-917OC (2006).
-
Köhler, T. et al. Personalized aerosolised bacteriophage treatment of a chronic lung infection due to multidrug-resistant Pseudomonas aeruginosa. Nat. Commun. Nat. Res. 14. https://doi.org/10.1038/s41467-023-39370-z (2023).
-
Pragman, A. A., Berger, J. P. & Williams, B. J. Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms. Clin. Pulm Med. Lippincott Williams Wilkins. 23, 57–66. https://doi.org/10.1097/CPM.0000000000000108 (2016).
-
Forti, F. et al. Design of a broad-range Bacteriophage Cocktail that Reduces Pseudomonas Aeruginosa Biofilms and Treats Acute Infections in Two Animal Models 62 (Antimicrob Agents Chemother. American Society for Microbiology, 2018). https://doi.org/10.1128/AAC.02573-17
-
Waters, E. M. et al. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax BMJ Publishing Group. 72, 666–667. https://doi.org/10.1136/thoraxjnl-2016-209265 (2017).
-
Colom, J. et al. Microencapsulation with alginate/CaCO 3: A strategy for improved phage therapy. Sci. Rep. Nat. Publishing Group. 7. https://doi.org/10.1038/srep41441 (2017).
