Breaking the durability barrier with d band optimized Cu Fe twin crystal nanozymes for long term suppression of Botrytis cinerea

breaking-the-durability-barrier-with-d-band-optimized-cu-fe-twin-crystal-nanozymes-for-long-term-suppression-of-botrytis-cinerea
Breaking the durability barrier with d band optimized Cu Fe twin crystal nanozymes for long term suppression of Botrytis cinerea

References

  1. Schmidt-Traub, G., Obersteiner, M. & Mosnier, A. Fix the broken food system in three steps. Nature 569, 181–183 (2019).

    Google Scholar 

  2. Mason-D’Croz, D. et al. Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. Lancet Planet. Health 3, e318–e329 (2019).

    Google Scholar 

  3. Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021).

    Google Scholar 

  4. Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).

    Google Scholar 

  5. Kumar, S. et al. Plant extract-mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: a state-of-the-art review. Trends Food Sci. Tech. 112, 651–666 (2021).

    Google Scholar 

  6. Rao, J., Chen, B. & McClements, D. J. Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action. Annu. Rev. Food Sci. Technol. 10, 365–387 (2019).

    Google Scholar 

  7. Ristaino, J. B. et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 118, e2022239118 (2021).

  8. Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640–656 (2023).

    Google Scholar 

  9. Jung, S. et al. Multifunctional bio-nanocomposite coatings for perishable fruits. Adv. Mater. 32, e1908291 (2020).

    Google Scholar 

  10. Hu, Q. et al. Development of multifunctional nanoencapsulated trans-resveratrol/chitosan nutraceutical edible coating for strawberry preservation. ACS Nano 17, 8586–8597 (2023).

    Google Scholar 

  11. Bi, K. et al. The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nat. Commun. 12, 2166 (2021).

    Google Scholar 

  12. Zhang, M., Li, W., Zhang, T., Liu, Y. & Liu, L. Botrytis cinerea-induced F-box protein 1 enhances disease resistance by inhibiting JAO/JOX-mediated jasmonic acid catabolism in Arabidopsis. Mol. Plant 17, 297–311 (2023).

    Google Scholar 

  13. Chang, H. et al. High-throughput coating with biodegradable antimicrobial pullulan fibres extends shelf life and reduces weight loss in an avocado model. Nat. Food 3, 428–436 (2022).

    Google Scholar 

  14. Gómez Galindo, F., Herppich, W., Gekas, V. & Sjöholm, I. Factors affecting quality and postharvest properties of vegetables: integration of water relations and metabolism. Crit. Rev. Food Sci. Nutr. 44, 139–154 (2004).

    Google Scholar 

  15. Chand, A. Seafood preservation strategies. Nat. Food 5, 273–273 (2024).

    Google Scholar 

  16. Wang, Y., Lang, Y., Yang, Q. & Wu, P. Breaking the photostability and pH limitation of halo-fluoresceins through chitosan conjugation. Adv. Mater. 35, e2210956 (2023).

    Google Scholar 

  17. Vela-Corcía, D. et al. MFS transporter from Botrytis cinerea provides tolerance to glucosinolate breakdown products and is required for pathogenicity. Nat. Commun. 10, 2886 (2019).

    Google Scholar 

  18. Smirnova, E. et al. Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection. Mol. Plant 10, 1159–1173 (2017).

    Google Scholar 

  19. Zhou, X. et al. ROS balance autoregulating core-shell CeO2@ZIF-8/Au nanoplatform for wound repair. Nano Micro. Lett. 16, 156 (2024).

    Google Scholar 

  20. Guo, Y. et al. Multifunctional PtCuTe nanosheets with strong ROS scavenging and ROS-independent antibacterial properties promote diabetic wound healing. Adv. Mater. 36, e2306292 (2023).

    Google Scholar 

  21. Jin, L. et al. Microenvironment-activated nanozyme-armed bacteriophages efficiently combat bacterial infection. Adv. Mater. 35, e2301349 (2023).

    Google Scholar 

  22. Cao, C. Y. et al. POD Nanozyme optimized by charge separation engineering for light/pH-activated bacteria catalytic/photodynamic therapy. Signal Transduct. Target. Ther. 7, 86 (2022).

    Google Scholar 

  23. Zhang, L. et al. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem. Int. Ed. 60, 3469–3474 (2021).

    Google Scholar 

  24. Zhang, J. C. et al. Piezoelectric enhanced peroxidase-like activity of metal-free sulfur doped graphdiyne nanosheets for efficient water pollutant degradation and bacterial disinfection. Nano Today 43, 101429 (2022).

    Google Scholar 

  25. Gao, L. Z. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).

    Google Scholar 

  26. Jiang, B. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506–1520 (2018).

    Google Scholar 

  27. Cao, C. Y. et al. Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme for self-replenishing and sustainable cascaded nanocatalytic cancer therapy. Adv. Mater. 33, 2106996 (2023).

    Google Scholar 

  28. Wu, J. J. X. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    Google Scholar 

  29. Wei, F. et al. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem. Eng. J. 408, 127240 (2021).

    Google Scholar 

  30. Huang, Y. et al. Reusable ring-like Fe3O4/Au nanozymes with enhanced peroxidase-like activities for colorimetric-SERS dual-mode sensing of biomolecules in human blood. Biosens. Bioelectron. 209, 114253 (2022).

    Google Scholar 

  31. Zhao, S. Z., Yu, X. J., Qian, Y. N., Chen, W. & Shen, J. L. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 10, 6278–6309 (2020).

    Google Scholar 

  32. Chen, Z. et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6, 4001–4012 (2012).

    Google Scholar 

  33. Dong, H. J. et al. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 13, 5365 (2022).

    Google Scholar 

  34. Zhang, C. et al. X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy. Biomaterials 276, 121023 (2021).

    Google Scholar 

  35. Chen, Q. et al. Novel twin-crystal nanosheets with MnO2 modification to combat bacterial biofilm against periodontal infections via multipattern strategies. Adv. Healthc. Mater. 12, e2300313 (2023).

    Google Scholar 

  36. Li, S. et al. Bimetallic oxide nanozyme-mediated depletion of glutathione to boost oxidative stress for combined nanocatalytic therapy. J. Colloid Interface Sci. 623, 787–798 (2022).

    Google Scholar 

  37. Zhang, Y. et al. Bimetallic molecularly imprinted nanozyme: dual-mode detection platform. Biosens. Bioelectron. 196, 113718 (2022).

    Google Scholar 

  38. Fu, Y. et al. Hybridization chain reaction-mediated Fe2MoO4 bimetallic nanozyme for colorimetric risk prediction of bladder cancer. Biosens. Bioelectron. 210, 114272 (2022).

    Google Scholar 

  39. Zhu, Y. et al. Dual nanozyme-driven PtSn bimetallic nanoclusters for metal-enhanced tumor photothermal and catalytic therapy. ACS Nano 17, 6833–6848 (2023).

    Google Scholar 

  40. Woo, J. et al. Attenuation of phytofungal pathogenicity of Ascomycota by autophagy modulators. Nat. Commun. 15, 1621 (2024).

    Google Scholar 

  41. Pirnia, M., Shirani, K., Tabatabaee Yazdi, F., Moratazavi, S. A. & Mohebbi, M. Characterization of antioxidant active biopolymer bilayer film based on gelatin-frankincense incorporated with ascorbic acid and Hyssopus officinalis essential oil. Food Chem. X 14, 100300 (2022).

    Google Scholar 

  42. Cazón, P., Vázquez, M. & Velazquez, G. Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohydr. Polym. 195, 432–443 (2018).

    Google Scholar 

  43. Chen, J. X. et al. Characterization of sodium alginate-based films incorporated with thymol for fresh-cut apple packaging. Food Control 126, 108063 (2021).

    Google Scholar 

  44. Peretto, G. et al. Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality. Food Bioprocess Technol. 10, 165–174 (2017).

    Google Scholar 

  45. Tsurko, E. S. et al. Can high oxygen and water vapor barrier nanocomposite coatings be obtained with a waterborne formulation? J. Membr. Sci. 540, 212–218 (2017).

    Google Scholar 

  46. Sogvar, O. B., Saba, M. K. & Emamifar, A. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol. Technol. 114, 29–35 (2016).

    Google Scholar 

  47. Mao, W. et al. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. Plant Cell 34, 1226–1249 (2022).

    Google Scholar 

  48. Han, B., Wang, H. & Niu, X. A natural inhibitor of diapophytoene desaturase attenuates methicillin-resistant Staphylococcus aureus (MRSA) pathogenicity and overcomes drug-resistance. Br. J. Pharmacol. 181, 2583–2599 (2024).

    Google Scholar 

  49. Wu, F. et al. Colorimetric sensor array based on Au2Pt nanozymes for antioxidant nutrition quality evaluation in food. Biosens. Bioelectron. 236, 115417 (2023).

    Google Scholar 

  50. Wang, M. L. et al. Development of novel 2-substituted acylaminoethylsulfonamide derivatives as fungicides against Botrytis cinerea. Bioorg. Chem. 87, 56–69 (2019).

    Google Scholar 

  51. Zhang, X. C. et al. Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo. Adv. Funct. Mater. 31, 2008720 (2021).

    Google Scholar 

  52. Permyakova, A. et al. In situ synthesis of a mesoporous MIL-100 (Fe) bacteria exoskeleton. ACS Mater. Lett. 5, 79–84 (2023).

    Google Scholar 

  53. Zheng, X. L. et al. Mode of action of plectasin-derived peptides against gas gangrene-associated Clostridium perfringens type A. PLoS ONE 12, e0185215 (2017).

    Google Scholar 

  54. Nakano, K. et al. The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke. Nat. Commun. 2, 485 (2011).

    Google Scholar 

  55. Wang, W. J. et al. A small secreted protein triggers a TLR2/4-dependent inflammatory response during invasive Candida albicans infection. Nat. Commun. 10, 1015 (2019).

    Google Scholar 

  56. Liu, L., Wang, H. S., Lin, L., Gao, Y. W. & Niu, X. D. Mulberrin inhibits Botrytis cinerea for strawberry storage by interfering with the bioactivity of 14α-demethylase (CYP51). Food Funct. 13, 4032–4046 (2022).

    Google Scholar 

  57. Meunier, E. et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16, 476–U185 (2015).

    Google Scholar 

  58. Li, H. et al. Preparation and characterization of sodium alginate/gelatin/Ag nanocomposite antibacterial film and its application in the preservation of tangerine. Food Packag. Shelf Life 33, 100928 (2022).

    Google Scholar 

  59. Rezaei, M., Ojagh, S. M., Razavi, S. H. & Hosseini, S. M. H. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. J. Biotechnol. 150, S573–S573 (2010).

    Google Scholar 

  60. Tran, T. U., Suzuki, K., Okadome, H., Homma, S. & Ohtsubo, K. i. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system. Food Chem. 88, 557–566 (2004).

    Google Scholar 

  61. Kobayashi, Y. et al. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors 10, 3411–3443 (2010).

    Google Scholar 

  62. Chen, Q., Zhao, J. & Vittayapadung, S. Identification of the green tea grade level using electronic tongue and pattern recognition. Food Res. Int. 41, 500–504 (2008).

    Google Scholar 

  63. Cluff, M. et al. The chemical, microbial, sensory and technological effects of intermediate salt levels as a sodium reduction strategy in fresh pork sausages. J. Sci. Food Agr. 96, 4048–4055 (2016).

    Google Scholar 

  64. Niu, X. D., Zhu, L., Xi, L. J., Guo, L. & Wang, H. S. An antimicrobial agent prepared by N-succinyl chitosan immobilized lysozyme and its application in strawberry preservation. Food Control 108, 106829 (2020).

    Google Scholar 

  65. Eshetu, A., Ibrahim, A. M., Forsido, S. F. & Kuyu, C. G. Effect of beeswax and chitosan treatments on quality and shelf life of selected mango (Mangifera indica L.) cultivars. Heliyon 5, e01116 (2019).

    Google Scholar 

  66. Liu, K. S. Soybean trypsin inhibitor assay: further improvement of the standard method approved and reapproved by American Oil Chemists’ Society and American Association of Cereal Chemists International. J. Am. Oil Chem. Soc. 96, 635–645 (2019).

    Google Scholar 

Download references