Cacao clones modulate pod tolerance to witches’ broom and nutritional imbalances, enhancing cocoa production in the Amazon

cacao-clones-modulate-pod-tolerance-to-witches’-broom-and-nutritional-imbalances,-enhancing-cocoa-production-in-the-amazon
Cacao clones modulate pod tolerance to witches’ broom and nutritional imbalances, enhancing cocoa production in the Amazon

References

  1. Hebbar, K. B., Apshara, E., Chandran, K. P. & Prasad, P. V. V. Effect of elevated CO2, high temperature, and water deficit on growth, photosynthesis, and whole plant water use efficiency of cocoa (Theobroma Cacao L). Int. J. Biometeorol. 64, 47–57 (2020).

    Google Scholar 

  2. Lahive, F., Hadley, P. & Daymond, A. J. The physiological responses of Cacao to the environment and the implications for climate change resilience. A review. Agron. Sustain. Dev. 39, 5 (2019).

    Google Scholar 

  3. ICCO. Quarterly Bulletin of Cocoa Statistics. International Cocoa Organization (ICCO) (2023). https://www.icco.org/wp-content/uploads/Production_QBCS_XLIX_No.2.pdf

  4. Kongor, J. E., Owusu, M. & Oduro-Yeboah, C. Cocoa production in the 2020s: challenges and solutions. CABI Agric. Bioscience. https://doi.org/10.1186/s43170-024-00310-6 (2024).

    Google Scholar 

  5. IBGE. Levantamento Sistemático Da Produção Agrícola. (2024). https://sidra.ibge.gov.br/tabela/1618

  6. da C. de S. Braga, P. et al. Responses of Cacao to exposed to hypoxia and excess iron in growth, physiology, and nutritional value. J. Plant. Nutr. 47, 972–985 (2024).

    Google Scholar 

  7. de Lima, J. T. G. P., Rocha, R. B. & de Almeida, C. M. V. C. Desempenho produtivo de famílias de meios-irmãos de Cacaueiro (Theobroma Cacao L.) no município de Ouro Preto do Oeste-RO, Brasil. Revista Agroecossistemas. 14, 115 (2022).

    Google Scholar 

  8. Purdy, L. & Schmidt, R. Status of Cacao witches’ broom: Biology, Epidemiology, and management. Annu. Rev. Phytopathol. 34, 573–594 (1996).

    Google Scholar 

  9. Suh, N. N. & Molua, E. L. Cocoa production under climate variability and farm management challenges: some farmers’ perspective. J. Agric. Food Res. 8, 100282 (2022).

    Google Scholar 

  10. Numata, I., Soares, J. V. & Leônidas, F. C. Comparação Da fertilidade de solos Em Rondônia com diferentes tempos de conversão de Floresta Em pastagem. Rev. Bras. Cienc. Solo. 26, 949–955 (2002).

    Google Scholar 

  11. Barboza, E., Moline, E. F. V., Schlinndwein, J. A., de Farias, E. A., Brasilino, M. F. & P. & Fertilidade de solos Em Rondônia. Enciclopédia Biosfera Centro Científico Conhecer. 7, 586–594 (2011).

    Google Scholar 

  12. Martins, T. S. et al. Spatial variability of chemical indicators of Amazon agricultural soils through geomultivariate statistics, Brazil. Environ. Monit. Assess. 195, 1167 (2023).

    Google Scholar 

  13. Viégas, I., de Carvalho, J. M. & Frazão, D. A. J. G. de C. Desordens nutricionais na cultura da seringueira: critérios de diagnose para solo e plantas e correção de deficiência. in Seringueira: nutrição e adubação no Brasil (eds. Viégas, I. & Carvalho, J.) 123–173 (Embrapa Amazônia Oriental, Belém, (2000).

  14. de Prado, R. M. Mineral Nutrition of Tropical Plants (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-71262-4

  15. Assunção, A. G. L. et al. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. J. Exp. Bot. 73, 1789–1799 (2022).

    Google Scholar 

  16. Parent, L. E. & Dafir, M. A theoretical concept of compositional nutrient diagnosis. J. Am. Soc. Hortic. Sci. 117, 239–242 (1992).

    Google Scholar 

  17. de Souza, H. A. et al. Application of compositional nutrient diagnosis to maize cultivated in tropical soils in Brazilian Semi-Arid. Commun. Soil. Sci. Plant. Anal. 56, 49–58 (2025).

    Google Scholar 

  18. Traspadini, E. I. F., Wadt, P. G. S., Prado, R. M., Oliveira, D. F. & Campos, C. N. S. Assessing the predictive capability of N, P, and B diagnosis in cotton crop. Sci. Rep. 14, 17085 (2024).

    Google Scholar 

  19. de Souza, H. A. et al. Accuracy of DRIS and CND methods and nutrient sufficiency ranges for soybean crops in the Northeast of Brazil. Acta Sci. Agron. 45, e59006 (2023).

    Google Scholar 

  20. Benjamin, C. S., Luz, E. D. M. N., Monteiro, W. R., Santos Filho, L. P. & Santos, W. O. Avaliação de progênies de clones de Cacaueiros (série CP) Quanto à resistência a moniliophthora perniciosa. Agrotrópica (Itabuna). 26, 17–26 (2014).

    Google Scholar 

  21. Lima, E. M., Pereira, N. E., Pires, J. L., Barbosa, A. M. M. & Corrêa, R. X. Genetic molecular diversity, production and resistance to witches’ broom in Cacao clones. Crop Breed. Appl. Biotechnol. 13, 127–135 (2013).

    Google Scholar 

  22. Pereira, A. S. et al. Quantitative resistance to witches’ broom disease in progenies of different sources of resistance. Crop Prot. 146, 105678 (2021).

    Google Scholar 

  23. Macêdo, M., Rosa, E., Luz, E. D. & Pires, J. L. Avaliação de clones de Cacaueiro Quanto a produtividade e incidência de Vassoura de Bruxa e podridão Parda. Agrotrópica (Itabuna). 33, 5–16 (2021).

    Google Scholar 

  24. Marrocos, P. C. L. et al. Mineral nutrition of Cacao (Theobroma Cacao L.): relationships between foliar concentrations of mineral nutrients and crop productivity. J. Plant. Nutr. 43, 1498–1509 (2020).

    Google Scholar 

  25. Arévalo-Hernández, C. O. et al. Growth and nutritional responses of juvenile wild and domesticated Cacao genotypes to soil acidity. Agronomy 12, 3124 (2022).

    Google Scholar 

  26. Rosas-Patiño, G., Puentes-Páramo, Y. J. & Menjivar-Flores, J. C. Efecto Del pH sobre La concentración de nutrientes En Cacao (Theobroma Cacao L.) En La Amazonia Colombiana. Revista U D C Actualidad & Divulgación Científica 24, (2021).

  27. Paramo, Y. J. P., Carabalí, A. G. & Flores, J. C. M. Influence of the relationship among nutrients on yield of cocoa (Theobroma Cacao L.) clones. Acta Agron. 65, 176–182 (2015).

    Google Scholar 

  28. Okabe, E. T., de Almeida, C. M. V. C., de Almeida, L. C. & Dias, L. A. dos S. Desempenho de clones de cacaueiro em Ouro Preto do Oeste, Rondônia, Brasil. Bioscience Journal 20, 133–143 (2004).

  29. de Carvalho, C. G. P., de Almeida, C. M. V. C., Cruz, C. D. & Machado, P. F. R. Avaliação e seleção de híbridos de Cacaueiro Em Rondônia. Pesqui Agropecu Bras. 36, 1043–1051 (2001).

    Google Scholar 

  30. Almeida, C. D., Pires, J. L., Silva, A. P. & Gomes, L. P. Desempenho agronômico de variedades clonais de Cacaueiros Em Ouro Preto do Oeste, Rondônia. Agrotropica 28, 221–232 (2016).

    Google Scholar 

  31. Barbosa, R. C. M. & de Neves, A. D. S. Levantamento Semidetalhado Dos Solos Da Estação Experimental de Ouro Preto de Oeste, RO. (1983).

  32. Wadt, P. G. S. Manejo Do Solo E Recomendação De Adubação Para O Estado Do Acre Vol. 1 (Embrapa Acre, 2005).

  33. Chepote, R. E. et al. Recommendations of Lime and Fertilizers for Cacao Cultivation in Southern Bahia, Brazil. (2013).

  34. INMET. Dados históricos anuais – Ano 2024. Instituto Nacional de Meteorologia (2024). https://portal.inmet.gov.br/dadoshistoricos

  35. Traspadini, E. I. F. et al. Fermentation and clone selection modulate the biochemical and nutritional profile of cocoa beans grown in the Southwestern Amazon. Sci. Rep. 15, 43999 (2025).

    Google Scholar 

  36. ICGD. International Cocoa Germplasm Database. Preprint at (2025). https://icgd.reading.ac.uk/recaptcha.php?orig_page=search.php

  37. Boza, E. J. et al. Genetic characterization of the Cacao cultivar CCN 51: its impact and significance on global Cacao improvement and production. J. Am. Soc. Hortic. Sci. 139, 219–229 (2014).

    Google Scholar 

  38. Jaimez, R. E. et al. Theobroma Cacao L. cultivar CCN 51: a comprehensive review on origin, genetics, sensory properties, production dynamics, and physiological aspects. PeerJ 10, e12676 (2022).

    Google Scholar 

  39. Pound, F. J. Cacao and witches’ broom disease: report on a recent visit to the Amazon territory of Peru, September 1942–February 1943. Archives Cocoa Res. 1, 73–91 (1943).

    Google Scholar 

  40. Freitas, L. S. et al. Elite Cacao clonal cultivars with diverse genetic structure, high potential of production, and good organoleptic quality are helping to rebuild the cocoa industry in Brazil. Int. J. Mol. Sci. 26, 3386 (2025).

    Google Scholar 

  41. Silva, S. D. V. M., Gomes, A. R. S., Mandarino, E. P., Filho, L. P. & Damaceno, V. O. dos S. Indicações de resistência à murcha-de-ceratocystis em genótipos de cacaueiros no Sul da Bahia, Brasil. in Proceedings of the 15th International Cocoa Research Conference (Cocoa Producers’ Alliance, San Jose, Costa Rica, (2006).

  42. Vello, F., Garcia, J. R. & Magalhaes, W. S. Producao e selecao de cacaueiros hibridos na Bahia. in Proceedings of the 4th International Cocoa Conference 38–56St. Augustine, Trinidad, (1974).

  43. Lopes, U. V. et al. Cacao breeding in Bahia, brazil: strategies and results. Crop Breed. Appl. Biotechnol. 11, 73–81 (2011).

    Google Scholar 

  44. CEPLAC. Indicação de Variedades Clonais de Cacaueiro. Preprint at. (2014).

  45. Sodré, G. A. & Nery, I. D. Relações entre Massas de Frutos e amêndoas Para Estimar rendimentos Em cacauicultura. Agrotropica 35, 15–20 (2023).

    Google Scholar 

  46. Vello, F. & Rocha, H. M. II Expedição Botânica à Amazônia Brasileira. (1967).

  47. de Almeida, C. M. V. C., Barriga, J. P., Machado, P. F. R. & Bartley, B. G. D. Evolução Do Programa de Conservação Dos Recursos Genéticos de Cacau Na Amazônia Brasileira. vol. 5 (1987).

  48. Almeida, C. M. V. C. et al. Recursos genéticos de Cacaueiro Em Rondônia: retrospectiva histórica, Origem e inventário. Agrotropica 27, 93–124 (2015).

    Google Scholar 

  49. Motamayor, J. C. et al. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma Cacao L). PLoS One. 3, e3311 (2008).

    Google Scholar 

  50. Guimarães, M. E. S. et al. Genetic evaluation and selection of cocoa tree clones. Ciência Rural. 52, e20210433 (2022).

    Google Scholar 

  51. Morera, J. & Mora, A. Banco De Germoplasma De Cacao Del CATIE (Programa de Mejoramiento de Cultivos Tropicales, 1990).

  52. Fonseca, S. E. A. & Albuquerque, P. S. B. Avaliação de clones de cacau na Amazônia Brasileira em relação à incidência de vassoura-de-bruxa. in Proceedings of the 12th International Cocoa Research Conference (Cocoa Producers’ Alliance, Salvador, Brazil, (1996).

  53. Bhavishya, B. R. et al. Genotypic variation in flowering, fruit set, and Cherelle wilt, and their relationship with leaf nutrient status in cocoa (Theobroma Cacao L.) grown in humid tropics of India. Innovations Agric. 7, 1–5 (2024).

    Google Scholar 

  54. Bataglia, O. C., Furlani, A. M. C., Teixeira, J. P. F., Furlani, P. R. & Gallo, J. R. Métodos De Análise Química De Plantas. vol. Boletim Técnico 78 (Instituto Agronômico, 1983).

  55. Kraska, J. E. & Breitenbeck, G. A. Simple, robust method for quantifying silicon in plant tissue. Commun. Soil. Sci. Plant. Anal. 41, 2075–2085 (2010).

    Google Scholar 

  56. Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H. & Volkweiss, S. J. Análises de Solo, Plantas e Outros Materiais. (1995).

  57. Wadt, P. G. S. et al. Amazon,. Preliminary CND norms for evaluating the nutritional status of cocoa plantations in Rondônia, Brazil. in Caminhos da Produção Agroflorestal na Amazônia: II Workshop on Priority Agroforestry Production Chains in the Amazon. Proceedings (2023).

  58. Wadt, P. G. S. Relationships between soil class and nutritional status of coffee plantations. Rev. Bras. Cienc. Solo. 29, 227–234 (2005).

    Google Scholar 

  59. Alvarez, V. H. & de Leite, R. Fundamentos estatísticos Das fórmulas Usadas Para cálculo Dos índices DRIS. Bol. Informativo Da Sociedade Brasileira De Ciência Do Solo. 24, 20–25 (1999).

    Google Scholar 

  60. Cilas, C. & Bastide, P. Challenges to cocoa production in the face of climate change and the spread of pests and diseases. Agronomy 10, 1232 (2020).

    Google Scholar 

  61. Santos, A. S., Mora-Ocampo, I. Y., de Novais, D. P. S., Aguiar, E. R. G. R. & Pirovani, C. P. State of the Art of the molecular biology of the interaction between cocoa and witches’ broom disease: a systematic review. Int. J. Mol. Sci. 24, 5684 (2023).

    Google Scholar 

  62. Pereira, J. S., Santos, A. S., Luz, E. D. M. N. & Corrêa, R. X. Sources of resistance to witches’ broom disease in cacao (Theobroma cacao L.): Progress update and perspectives. Plant. Breed. 143, 798–809 (2024).

    Google Scholar 

  63. de Almeida, C. M. V. C., Pires, J. L. & de Silva, A. P. & Gomes, L. P. Desempenho agronômico de variedades clonais de cacaueiros em Ouro Preto do Oeste, Rondônia. Agrotópica 28, 221–232 (2016).

  64. Sun, Y., Wang, M., Mur, L. A. J., Shen, Q. & Guo, S. Unravelling the roles of nitrogen nutrition in plant disease defences. Int. J. Mol. Sci. 21, 572 (2020).

    Google Scholar 

  65. Riaz, M. Y. L., Wu, X., Hussain, S., Aziz, O. & Jiang, C. Boron deprivation induced Inhibition of root elongation is provoked by oxidative damage, root injuries and changes in cell wall structure. Environ. Exp. Bot. 156, 74–85 (2018).

    Google Scholar 

  66. Liu, J. J., Wei, Z. & Li, J. H. Effects of copper on leaf membrane structure and root activity of maize seedling. Bot. Stud. 55, 47 (2014).

    Google Scholar 

  67. Arévalo-Gardini, E. et al. Growth, physiological, nutrient-uptake-efficiency and shade-tolerance responses of Cacao genotypes under different shades. Agronomy 11, 1536 (2021).

    Google Scholar 

  68. Prado, R. M., Alves, D. M. R. & de Soares, A. A. V. L. Silicon: the only element in plant nutrition with a mitigating effect on multiple stresses. in Silicon Advances for Sustainable Agriculture and Human Health (eds Prado, R., de Etesami, M. & Srivastava, A. K.) H. 41–64 (Springer Nature Switzerland, Cham, doi:https://doi.org/10.1007/978-3-031-69876-7. (2024).

    Google Scholar 

  69. Pandey, R., Singh, C., Mishra, S., Abdulraheem, M. I. & Vyas, D. Silicon uptake and transport mechanisms in plants: processes, applications and challenges in sustainable plant management. Biol. Futur. 76, 19–31 (2025).

    Google Scholar 

  70. Orozco-Aguilar, L. et al. Risk analysis and Cacao pod survivorship curves to improve yield forecasting methods. Frontiers Agronomy 6, (2024).

  71. Zambrano, M. A. O., Castillo, D. A., Rodríguez Pérez, L. & Terán, W. Cacao (Theobroma Cacao L.) response to water stress: physiological characterization and antioxidant gene expression profiling in commercial clones. Front Plant. Sci 12, (2021).

  72. Dietz, K. J., Zörb, C. & Geilfus, C. ‐M. Drought and crop yield. Plant. Biol. 23, 881–893 (2021).

    Google Scholar 

  73. Melo, C. C., de Amaral, F., de Prado, R. & D. S. & The role of mineral nutrients in plant growth under drought stress. Sustainable Agric. Under Drought Stress. (Elsevier), 195–207. https://doi.org/10.1016/B978-0-443-23956-4.00013-2 (2025).

Download references