Caesalpinia sappan is a potent source of multi-functional bioactive compounds

caesalpinia-sappan-is-a-potent-source-of-multi-functional-bioactive-compounds
Caesalpinia sappan is a potent source of multi-functional bioactive compounds

References

  1. Leyla, P. et al. Bioactivity-guided isolation of cytotoxic and antioxidant phytochemicals from four Cousinia species from Stenocephala bunge section. Pharmacogn Mag. 15, 682–692 (2019).

    Google Scholar 

  2. Leyla, P., Eren, D., Hanifa, F. & Osman, T. Cytotoxic and phytochemical investigation of Cousinia ermenekensis Hub.-MOR. Farmácia 68, 521–525 (2020).

  3. Yang, Q. Q. et al. Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments. Trends Food Sci. Technol. 97, 341–354 (2020).

    Google Scholar 

  4. Sun, L. N. et al. Intratumoral injection of two dosage forms of Paclitaxel nanoparticles combined with photothermal therapy for breast cancer. Chin. Herb. Med. 17, 156–165 (2025).

    Google Scholar 

  5. Wong, C. C., Li, H. B., Cheng, K. W. & Chen, F. A. Systematic survey of antioxidant activity of 30 traditional Chinese medicinal plant extracts using the ferric reducing antioxidant power assay. Food Chem. 97, 705–711 (2006).

    Google Scholar 

  6. Maheshwari, N. & Sharma, M. C. Anticancer properties of some selected plant phenolic compounds: future leads for therapeutic development. J. Herb. Med. 42, 100801 (2023).

    Google Scholar 

  7. Gu, X. J., Hao, D. C. & Xiao, P. G. Research progress of Chinese herbal medicine compounds and their bioactivities: fruitful 2020. Chin. Herb. Med. 14, 171–186 (2022).

    Google Scholar 

  8. Rau, T. & Liu, J. Screening of traditional Chinese medicinal plant extracts with antiviral potential. J. Anim. Sci. 96, 519–520 (2018).

    Google Scholar 

  9. Karakas, F. P. et al. In vitro cytotoxic, antibacterial, anti-inflammatory and antioxidant activities and phenolic content in wild-grown flowers of common daisy-A medicinal plant. J. Herb. Med. 8, 31–39 (2017).

    Google Scholar 

  10. Alu’datt, M. H., Rababah, T., Ereifej, K. & Alli, I. Distribution, antioxidant and characterization of phenolic compounds in soybeans, flaxseed and olives. Food Chem. 139, 93–99 (2013).

    Google Scholar 

  11. Yang, Q. Q. et al. Comparison of the phenolic profiles of soaked and germinated peanut cultivars via UPLC-QTOF-MS. Antioxidants 8, 47 (2019).

    Google Scholar 

  12. Yang, Q. Q. et al. Phenolic content and In vitro antioxidant activity in common beans Phaseolus vulgaris L. are not directly related to anti-proliferative activity. Food Biosci. 36, 100662 (2020).

    Google Scholar 

  13. Yang, Q. Q. et al. Phytochemicals, essential oils, and bioactivities of an underutilized wild fruit cili Rosa Roxburghii. Ind. Crop Prod. 143, 111928 (2020).

    Google Scholar 

  14. Zhang, D. et al. Discovery of antibacterial dietary spices that target antibiotic-resistant bacteria. Microorganisms 7, 157 (2019).

    Google Scholar 

  15. Yusook, K., Weeranantanapan, O., Hua, Y., Kumkrai, P. & Chudapongse, N. Lupinifolin from Derris reticulata possesses bactericidal activity on Staphylococcus aureus by disrupting bacterial cell membrane. J. Nat. Med. 71, 357–366 (2017).

    Google Scholar 

  16. Park, M. & Kim, B. Antioxidant and cytotoxic activities of hot water and ethanol extracts from Caesalpinia Sappan. J. Food Eng. 21, 249–255 (2017).

    Google Scholar 

  17. Kongkham, S. & Aylada, K. The antioxidant activity of Caesalpinia Sappan Heartwood extracted with different ethanol concentrations. Planta Med. 85, 224 (2019).

    Google Scholar 

  18. Giovannucci, E. & Chan, A. T. Role of vitamin and mineral supplementation and aspirin use in cancer survivors. J. Clin. Oncol. 28, 4081–4085 (2010).

    Google Scholar 

  19. Li, W. et al. Discovery of novel quinoline-chalcone derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. J. Med. Chem. 62, 993–1013 (2010).

    Google Scholar 

  20. Chen, P. et al. Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy In vitro and In vivo. J. Nat. Med. 78, 677–692 (2024).

    Google Scholar 

  21. Nowdijeh, A. A. et al. Anti-oxidant and selective anti-proliferative effects of the total Cornicabra Olive polyphenols on human gastric MKN45 cells. Iran. J. Biotechnol. 17, 37–44 (2019).

    Google Scholar 

  22. Jeong, I. Y. et al. Anti-inflammatory activity of an ethanol extract of Caesalpinia Sappan in LPS-induced RAW 264.7 cells. Prev. Nutr. Food Sci. 13, 253–258 (2008).

    Google Scholar 

  23. Kim, G. T., Lee, S. H. & Kim, Y. M. Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells. J. Cancer Prev. 18, 264–270 (2013).

    Google Scholar 

  24. Ren, K. et al. Synergistic anti-cancer effects of Galangin and Berberine through apoptosis induction and proliferation Inhibition in oesophageal carcinoma cells. Biome Pharmacother. 84, 1748–1759 (2016).

    Google Scholar 

  25. Lee, K. W. & Lee, H. J. The roles of polyphenols in cancer chemoprevention. BioFactors 26, 105–121 (2006).

    Google Scholar 

  26. Mohan, G., Anand, S. & Doss, A. Efficacy of aqueous and methanol extracts of Caesalpinia Sappan and Mimosa pudica L. for their potential antimicrobial activity. South. As J. Biol. Sci. 1, 48–45 (2011).

    Google Scholar 

  27. Wang, X., Zeng, Q., Contreras, M. & Wang, L. Profiling and quantification of phenolic compounds in Camellia seed oils: natural tea polyphenols in vegetable oil. Food Res. Int. 102, 184–194 (2017).

    Google Scholar 

  28. Zhang, L. et al. Antihyperglycemic, antioxidant activities of two Acer palmatum cultivars., and identification of phenolics profile by UPLC-QTOF-MS/MS: new natural sources of functional constituents. Ind. Crop Prod. 89, 522–532 (2016).

    Google Scholar 

  29. Shen, B. Antimicrobial activity-guided identification of compounds from the deciduous leaves of Malus Doumeri by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Res. 33, 2515–2520 (2019).

    Google Scholar 

  30. Ngernnak, C. Phytochemical and cytotoxic investigations of the Heartwood of Caesalpinia Sappan. Asian J. Pharm. Clin. Res. 11, 334–336 (2018).

    Google Scholar 

  31. Chen, L., Chen, X., Su, L., Jiang, Y. & Liu, B. Rapid characterization and identification of compounds in Saposhnikoviae radix by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Nat. Prod. Res. 32, 898–901 (2018).

    Google Scholar 

  32. Cheng, L. Z. et al. Distinct changes of metabolic profile and sensory quality during Qingzhuan tea processing revealed by LC-MS-Based metabolomics. J. Agric. Food Chem. 68, 4955–4965 (2020).

    Google Scholar 

  33. Pang, H. Q. et al. Comprehensive chemical profiling of Yindan Xinnaotong soft capsule and its neuroprotective activity evaluation in vitro. J. Chromatogr. A. 1601, 288–299 (2019).

    Google Scholar 

  34. Feng, Y., Dunshea, F. R. & Suleria, H. A. R. LC-ESI-QTOF/MS characterization of bioactive compounds from black spices and their potential antioxidant activities. J. Food Sci. Technol. 57, 4671–4687 (2020).

    Google Scholar 

  35. Koch, K. & Abyssinone, V. A prenylated flavonoid isolated from the stem bark of Erythrina melanacantha increases oxidative stress and decreases stress resistance in Caenorhabditis elegans. J. Pharm. Pharmacol. 71, 1007–1016 (2019).

    Google Scholar 

  36. Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. Fingerprint analysis of the fruits of Cnidium monnieri extract by high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 43, 926–936 (2007).

    Google Scholar 

  37. Gao, D. et al. Analysis of chemical constituents in an herbal formula Jitong Ning tablet. J. Pharm. Biomed. Anal. 140, 301–312 (2017).

    Google Scholar 

  38. Ito, C. & Furukawa, C. Three new coumarins from the leaves of Murraya paniculata. Heterocycles 26, 2959–2962 (1987).

    Google Scholar 

  39. Zhao, X. Analysis of flavonoids in Dalbergia Odorifera by ultra-performance liquid chromatography with tandem mass spectrometry. Molecules 25, 389 (2020).

    Google Scholar 

  40. Fu, L. C. et al. A new 3-benzylchroman derivative from Sappan lignum Caesalpinia Sappan. Molecules 13, 1923–1930 (2018).

    Google Scholar 

  41. Min, B. S. et al. Compounds from the Heartwood of Caesalpinia Sappan and their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 22, 7436–7439 (2012).

    Google Scholar 

  42. Mueller, M. Compounds from Caesalpinia Sappan with anti-inflammatory properties in macrophages and chondrocytes. Food Funct. 7, 1671–1679 (2016).

    Google Scholar 

  43. Hill, R. & Hartree, E. F. Hematin compounds in plants. Annu. Rev. Plant. Physiol. Plant. Molec Biol. 4, 115–150 (2003).

    Google Scholar 

  44. Nguyen, M. T., Awale, S., Tezuka, Y., Le, T. Q. & Kadota, S. Xanthine oxidase inhibitors from the Heartwood of Vietnamese Caesalpinia Sappan. Chem. Pharm. Bull. 53, 984–988 (2005).

    Google Scholar 

  45. Huang, D., Ou, B. & Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856 (2005).

    Google Scholar 

  46. Legeay, S., Rodier, M., Fillon, L., Faure, S. & Clere, N. Epigallocatechin gallate: a review of its beneficial properties to prevent metabolic syndrome. Nutrients 7, 5443–5468 (2015).

    Google Scholar 

  47. Nirmal, N. P., Rajput, M. S., Prasad, R. G. S. V. & Ahmad, M. Brazilin from Caesalpinia Sappan Heartwood and its Pharmacological activities: A review. Asian Pac. J. Trop. Med. 8, 421–430 (2015).

    Google Scholar 

  48. Sulaiman, M. et al. Antibacterial phenolic compounds from the flowering plants of Asia and the pacific: coming to the light. Pharm. Biol. 62, 713–766 (2024).

    Google Scholar 

  49. Schmidt, C. et al. PI3Kγ mediates microglial proliferation and cell viability via ROS. Cells 24, 2534 (2021).

    Google Scholar 

  50. Zhong, X., Wu, B., Pan, Y. J. & Zheng, S. Brazilein inhibits survivin protein and mRNA expression and induces apoptosis in hepatocellular carcinoma HepG2 cells. Neoplasma 56, 387–392 (2009).

    Google Scholar 

  51. Zeng, K. W. et al. Deoxysappanone B, a homoisoflavone from the Chinese medicinal plant Caesalpinia Sappan L., protects neurons from microglia-mediated inflammatory injuries via Inhibition of IκB kinase (IKK)-NF-κB and p38/ERK MAPK pathways. Eur. J. Pharmacol. 748, 18–29 (2015).

    Google Scholar 

Download references