Camellia sinensis-synthesized silver nanoparticles and meropenem combination against extensively drug-resistant Klebsiella pneumoniae

camellia-sinensis-synthesized-silver-nanoparticles-and-meropenem-combination-against-extensively-drug-resistant-klebsiella-pneumoniae
Camellia sinensis-synthesized silver nanoparticles and meropenem combination against extensively drug-resistant Klebsiella pneumoniae

References

  1. Herridge, W. P., Shibu, P., O’Shea, J., Brook, T. C. & Hoyles, L. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J. Med. Microbiol. 69, 176–194 (2020).

    Google Scholar 

  2. Hamed, S. M. et al. Plasmid-mediated quinolone resistance in gram-negative pathogens isolated from cancer patients in Egypt. Microb. Drug Resistance 24, 785 (2018).

  3. Al-Baz, A. A., Maarouf, A., Marei, A. & Abdallah, A. L. Prevalence and antibiotic resistance profiles of Carbapenem-Resistant Klebsiella pneumoniae isolated from tertiary care Hospital, Egypt. Egypt. J. Hosp. Med. 88, 2883–2890 (2022).

    Google Scholar 

  4. Choby, J. E., Howard-Anderson, J. & Weiss, D. S. Hypervirulent Klebsiella pneumoniae – clinical and molecular perspectives. J. Intern. Med. 287, 283–300 (2020).

    Google Scholar 

  5. Russo, T. A. & Marr, C. M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 32, 785 (2019).

  6. Emam, S. M., Abdelrahman, S., Hasan, A. A. & Melouk, E. L. M. S. Hypervirulent Klebsiella pneumoniae at Benha university hospitals. Egypt. J. Hosp. Med. 90, 3592–3597 (2023).

    Google Scholar 

  7. Li, Y. & Ni, M. Regulation of biofilm formation in Klebsiella pneumoniae. Front. Microbiol. 14, 963 (2023).

  8. Li, Y., Kumar, S. & Zhang, L. Mechanisms of antibiotic resistance and developments in therapeutic strategies to combat Klebsiella pneumoniae infection. Infect. Drug Resist. 17, 1107–1119 (2024).

    Google Scholar 

  9. Abdelaziz, S. M., Aboshanab, K. M., Yahia, I. S. & Yassien, M. A. & Hassouna, N. A. Correlation between the antibiotic resistance genes and susceptibility to antibiotics among the carbapenem-resistant gram-negative pathogens. Antibiotics 10, 785 (2021).

  10. Poerio, N. et al. Fighting MDR-Klebsiella pneumoniae infections by a combined Host- and Pathogen-Directed therapeutic approach. Front. Immunol. 13, 963 (2022).

  11. Chang, D., Sharma, L., Cruz, D. & Zhang, D. C. S. Clinical epidemiology, risk Factors, and control strategies of Klebsiella pneumoniae infection. Front. Microbiol. 12, 632 (2021).

  12. Kamel, N. A., El-Tayeb, W. N., El-Ansary, M. R., Mansour, M. T. & Aboshanab, K. M. XDR-Klebsiella pneumoniae isolates harboring blaOXA-48: in vitro and in vivo evaluation using a murine thigh-infection model. Exp. Biol. Med. 244, 789 (2019).

  13. Mabrouk, S. S., Abdellatif, G. R., Zaid, A. S. A. & Aboshanab, K. M. Propranolol restores susceptibility of XDR Gram-negative pathogens to meropenem and meropenem combination has been evaluated with either Tigecycline or Amikacin. BMC Microbiol. 23, 859 (2023).

  14. Sheu, C. C., Chang, Y. T., Lin, S. Y., Chen, Y. H. & Hsueh, P. R. Infections caused by Carbapenem-Resistant enterobacteriaceae: an update on therapeutic options. Front. Microbiol. 10, 896 (2019).

  15. Chen, Y. et al. Combination therapy for OXA-48 Carbapenemase-Producing Klebsiella pneumoniae bloodstream infections in premature infant: a case report and literature review. Infect. Drug Resist. 17, 1987–1997 (2024).

    Google Scholar 

  16. El-Sayed, S. E., Abdelaziz, N. A., El-Housseiny, G. S. & Aboshanab, K. M. Octadecyl 3-(3, 5-di-tert-butyl-4-hydroxyphenyl) propanoate, an antifungal metabolite of alcaligenes faecalis strain MT332429 optimized through response surface methodology. Appl. Microbiol. Biotechnol. 104, 7856 (2020).

  17. Dutescu, I. A. & Hillier, S. A. Encouraging the development of new antibiotics: are financial incentives the right way forward? A systematic review and case study. Infect. Drug Resist. 14, 415–434 (2021).

    Google Scholar 

  18. Vivas, R., Barbosa, A. A. T., Dolabela, S. S. & Jain, S. Multidrug-Resistant bacteria and alternative methods to control them: an overview. Microb. Drug Resist. 25, 890–908 (2019).

    Google Scholar 

  19. Hetta, H. F. et al. Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines 11, 413 (2023).

    Google Scholar 

  20. Hasan, W. L., Sari, R. & Hendradi, E. Green synthesis of antimicrobial silver nanoparticles using green tea extract: the role of concentration and pH. Jurnal Sains Farmasi Klinis. 11, 25–31 (2024).

    Google Scholar 

  21. Shokry, S. et al. Phytoestrogen β-Sitosterol exhibits potent in vitro antiviral activity against influenza A viruses. Vaccines (Basel) 11, 7856 (2023).

  22. Mohamed Hassan, N., Badawy Dawood, A., mohamed, M., Sayed, S. A. & Mohamed, D. Distribution, characterization and antibiotic resistance of hypervirulent Klebsiella pneumoniae (hvKp) strains versus classical strains(CKp) causing healthcare associated infections in Sohag university hospitals. Microbes Infect. Dis. 2024, 256 (2024).

    Google Scholar 

  23. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, 1972).

  24. CLSI. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute 2021. vol. M100-Ed31 (2021).

  25. Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).

    Google Scholar 

  26. Krumperman, P. H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 46, 165–170 (1983).

    Google Scholar 

  27. Versalovic, J., Koeuth, T. & Lupski, R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial Enomes. Nucleic Acids Res. 19, 6823–6831 (1991).

    Google Scholar 

  28. Everitt, B. S., Landau, S., Leese, M. & Stahl, D. Cluster Analysis (Wiley, 2011). https://doi.org/10.1002/9780470977811.

  29. Xia, Y., Liang, Z., Su, X. & Xiong, Y. Characterization of carbapenemase genes in Enterobacteriaceae species exhibiting decreased susceptibility to carbapenems in a university hospital in Chongqing, China. Ann. Lab. Med. 32, 270–275 (2012).

    Google Scholar 

  30. Colom, K. et al. Simple and reliable multiplex PCR assay for detection of blaTEM, BlaSHV and blaOXA-1 genes in Enterobacteriaceae. FEMS Microbiol. Lett. 223, 147–151 (2003).

    Google Scholar 

  31. Archambault, M. et al. Molecular characterization and occurrence of Extended-Spectrum β -Lactamase resistance genes among Salmonella enterica serovar corvallis from Thailand, Bulgaria, and Denmark. Microb. Drug Resist. 12, 192–198 (2006).

    Google Scholar 

  32. Du, J. et al. Phenotypic and molecular characterization of multidrug resistant Klebsiella pneumoniae isolated from a university teaching Hospital, China. PLoS One. 9, e95181 (2014).

    Google Scholar 

  33. Hatrongjit, R., Chopjitt, P., Boueroy, P. & Kerdsin, A. Multiplex PCR detection of common carbapenemase genes and identification of clinically relevant Escherichia coli and Klebsiella pneumoniae complex. Antibiotics 12, 76 (2022).

    Google Scholar 

  34. Park, C. H., Robicsek, A., Jacoby, G. A., Sahm, D. & Hooper, D. C. Prevalence in the united States of aac(6 ′) – Ibcr encoding a Ciprofloxacin-Modifying enzyme. Antimicrob. Agents Chemother. 50, 3953–3955 (2006).

    Google Scholar 

  35. Ali, S. et al. Green synthesis of silver nanoparticles from camellia sinensis and its antimicrobial and antibiofilm effect against clinical isolates. Materials 15, 6978 (2022).

    Google Scholar 

  36. Rodrigues, A. S. et al. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front. Microbiol. 15, 8963 (2024).

  37. Shehata, S., Elkholy, Y. N., Hussien, M. S. A., Yahia, I. S. & Aboshanab, K. M. Antibacterial, antibiofilm and cytotoxic activity of synthesized metal-incorporated mesoporous silica nanoparticles. AMB Express. 15, 130 (2025).

    Google Scholar 

  38. Khalil, M. A., El-Shanshoury, A. E. R. R., Alghamdi, M. A., Sun, J. & Ali, S. S. Streptomyces catenulae as a novel marine actinobacterium mediated silver nanoparticles: characterization, biological activities, and proposed mechanism of antibacterial action. Front. Microbiol. 13, 896 (2022).

  39. Lopez-Carrizales, M. et al. In vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens. Antibiotics 7, 50 (2018).

    Google Scholar 

  40. Taha, M. S. et al. Genotypic characterization of Carbapenem-Resistant Klebsiella pneumoniae isolated from an Egyptian university hospital. Pathogens 12, 121 (2023).

    Google Scholar 

  41. Hassuna, N. A., AbdelAziz, R. A., Zakaria, A. & Abdelhakeem, M. Extensively-Drug resistant Klebsiella pneumoniae recovered from neonatal sepsis cases from a major NICU in Egypt. Front. Microbiol. 11, 4526 (2020).

  42. Attia, N., El-Ghazzawi, E., Elkhwsky, F., Metwally, D. & Ramadan, A. Klebsiella pneumoniae isolated from an Egyptian pediatric hospital: Prevalence, antibiotic resistance, biofilm formation, and genotyping. Microbes Infect. Dis. 2023, 1423 (2023).

    Google Scholar 

  43. Osama, D., El-Mahallawy, H., Mansour, M. T., Hashem, A. & Attia, A. S. Molecular characterization of Carbapenemase-Producing Klebsiella pneumoniae isolated from Egyptian pediatric cancer patients including a strain with a rare Gene-Combination of β-Lactamases. Infect. Drug Resist. 14, 335–348 (2021).

    Google Scholar 

  44. Shehab El-Din, E. M. R., El-Sokkary, M. M. A., Bassiouny, M. R. & Hassan, R. Epidemiology of neonatal sepsis and implicated pathogens: a study from Egypt. Biomed. Res. Int. 2015, 1–11 (2015).

    Google Scholar 

  45. Maleki, N., Tahanasab, Z., Mobasherizadeh, S., Rezaei, A. & Faghri, J. Prevalence of CTX-M and TEM β-lactamases in Klebsiella pneumoniae isolates from patients with urinary tract Infection, Al-Zahra Hospital, Isfahan, Iran. Adv. Biomed. Res. 7, 7859 (2018).

  46. Moosavian, M. & Emam, N. The first report of emerging mobilized colistin-resistance Mcr genes and ERIC-PCR typing in Escherichia coli and Klebsiella pneumoniae clinical isolates in Southwest Iran. Infect. Drug Resist. 12, 1001–1010 (2019).

    Google Scholar 

  47. Parsaie Mehr, V., Shokoohizadeh, L., Mirzaee, M. & Savari, M. Molecular typing of Klebsiella pneumoniae isolates by enterobacterial repetitive intergenic consensus (ERIC)-PCR. Infect. Epidemiol. Microbiol. 3, 112–116 (2017).

    Google Scholar 

  48. Ferreira, R. L. et al. High prevalence of Multidrug-Resistant Klebsiella pneumoniae harboring several virulence and β-Lactamase encoding genes in a Brazilian intensive care unit. Front. Microbiol. 9, 8569 (2019).

  49. Zafer, M. M., Bastawisie, E., Wassef, M. M., Hussein, M., Ramadan, M. A. & A. F. & Epidemiological features of nosocomial Klebsiella Pneumoniae: virulence and resistance determinants. Future Microbiol. 17, 27–40 (2022).

    Google Scholar 

  50. Hussein, N. H., Kareem, F., Hussein, S., AL-Kakei, S. N. & Taha, B. M. The predominance of Klebsiella pneumoniae carbapenemase (KPC-type) gene among high-level carbapenem-resistant Klebsiella pneumoniae isolates in Baghdad, Iraq. Mol. Biol. Rep. 49, 4653–4658 (2022).

  51. Raheel, A., Azab, H., Hessam, W., Abbadi, S. & Ezzat, A. Detection of carbapenemase enzymes and genes among carbapenem-resistant Enterobacteriaceae isolates in Suez Canal university hospitals in Ismailia, Egypt. Microbes Infect. Dis. 1, 24–33 (2020).

    Google Scholar 

  52. Rai, M. K., Deshmukh, S. D., Ingle, A. P. & Gade, A. K. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112, 841–852 (2012).

    Google Scholar 

  53. Morgan, R. N. & Aboshanab, K. M. Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects. Future Sci. OA 10, 8569 (2024).

  54. El-Housseiny, G. S., Aboulwafa, M. M. & Aboshanab, K. A. & Hassouna, N. A. H. Optimization of rhamnolipid production by P. aeruginosa isolate P6. J. Surfactants Deterg. 19, 14523 (2016).

  55. Huq, M. A., Ashrafudoulla, M., Rahman, M. M., Balusamy, S. R. & Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: a review. Polym. (Basel). 14, 742 (2022).

    Google Scholar 

  56. Abada, E., Mashraqi, A., Modafer, Y., Al Abboud, M. A. & El-Shabasy, A. Review green synthesis of silver nanoparticles by using plant extracts and their antimicrobial activity. Saudi J. Biol. Sci. 31, 103877 (2024).

    Google Scholar 

  57. Dash, S. S., Samanta, S., Dey, S., Giri, B. & Dash, S. K. Rapid green synthesis of biogenic silver nanoparticles using cinnamomum Tamala leaf extract and its potential antimicrobial application against clinically isolated Multidrug-Resistant bacterial strains. Biol. Trace Elem. Res. 198, 681–696 (2020).

    Google Scholar 

  58. Mekky, A., Farrag, A., Sofy, A. & Hamed, A. Antibacterial and antifungal activity of Green-synthesized silver nanoparticles using Spinacia Oleracea leaves extract. Egypt. J. Chem. 0, 0–0 (2021).

    Google Scholar 

  59. Ahmed, T., Ogulata, R. T. & Gülnaz, O. Multifarious uses of UV-VIS spectroscopy for green synthesis of silver nanoparticles for antibacterial textiles. Text. Leather Rev. 7, 176–202 (2024).

    Google Scholar 

  60. Elsaid, E., Ahmed, O., Abdo, A. & Abdel Salam, S. Antimicrobial and antibiofilm effect of silver nanoparticles on clinical isolates of multidrug resistant Klebsiella pneumoniae. Microbes Infect. Dis. 0, 0–0 (2023).

    Google Scholar 

  61. Mogole, L., Omwoyo, W., Viljoen, E. & Moloto, M. Green synthesis of silver nanoparticles using aqueous extract of Citrus sinensis peels and evaluation of their antibacterial efficacy. Green. Process. Synthesis. 10, 851–859 (2021).

    Google Scholar 

  62. Nishibuchi, M., Chieng, Nishibuchi, M. & Loo, Y. Y. Synthesis of silver nanoparticles by using tea leaf extract from camellia sinensis. Int. J. Nanomed. 2012, 4263. https://doi.org/10.2147/IJN.S33344 (2012).

  63. Mariselvam, R. et al. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim. Acta Mol. Biomol. Spectrosc. 129, 537–541 (2014).

    Google Scholar 

  64. Logeswari, P., Silambarasan, S. & Abraham, J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J. Saudi Chem. Soc. 19, 311–317 (2015).

    Google Scholar 

  65. Jemal, K., Sandeep, B. V. & Pola, S. Synthesis characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. J. Nanomater. 2017, 1–11 (2017).

  66. Desouky, E., Shalaby, M., Gohar, M. & Gerges, M. Evaluation of antibacterial activity of silver nanoparticles against multidrug-resistant gram negative bacilli clinical isolates from Zagazig university hospitals. Microbes Infect. Dis. 1, 15–23 (2020).

    Google Scholar 

  67. Haji, S. H., Ali, F. A. & Aka, S. T. H. Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Sci. Rep. 12, 15254 (2022).

    Google Scholar 

Download references