Carbon Dots and mesoporous silica nanocomposites improve spray-induced gene silencing to suppress plant RNA and DNA viruses

carbon-dots-and-mesoporous-silica-nanocomposites-improve-spray-induced-gene-silencing-to-suppress-plant-rna-and-dna-viruses
Carbon Dots and mesoporous silica nanocomposites improve spray-induced gene silencing to suppress plant RNA and DNA viruses

References

  1. Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    Google Scholar 

  2. Velasco, L., Ruiz, L., Galipienso, L., Rubio, L. & Janssen, D. A. Historical account of viruses in intensive horticultural crops in the Spanish mediterranean arc: new challenges for a sustainable agriculture. Agronomy 10, 860 (2020).

    Google Scholar 

  3. Niu, D. et al. RNAs – a new frontier in crop protection. Curr. Opin. Biotechnol. 70, 204–212 (2021).

    Google Scholar 

  4. Mat Jalaluddin, N. S., Asem, M. & Harikrishna, J. A. Ahmad Fuaad, A. A. H. Recent progress on nanocarriers for Topical-Mediated RNAi strategies for crop Protection—A review. Molecules 28, 2700 (2023).

    Google Scholar 

  5. Taliansky, M. et al. Rna-based technologies for engineering plant virus resistance. Plants 10, 1–19 (2021).

    Google Scholar 

  6. Mitter, N., Worrall, E. A., Robinson, K. E., Xu, Z. P. & Carroll, B. J. Induction of virus resistance by exogenous application of double-stranded RNA. Curr. Opin. Virol. 26, 49–55 (2017).

    Google Scholar 

  7. Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants. 3, 1–10 (2017).

    Google Scholar 

  8. Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    Google Scholar 

  9. Das, R., Bandyopadhyay, R. & Pramanik, P. Carbon quantum Dots from natural resource: A review. Mater. Today Chem. 8, 96–109 (2018).

    Google Scholar 

  10. Maholiya, A. et al. An insight into the role of carbon Dots in the agriculture system: a review. Environ. Sci. Nano. 10, 959–995 (2023).

    Google Scholar 

  11. Wang, Z. et al. Functionalized carbon Dot-Delivered RNA nano fungicides as superior tools to control Phytophthora pathogens through plant RdRP1 mediated Spray‐Induced gene Silencing. Adv. Funct. Mater. 33, 2213143 (2023).

    Google Scholar 

  12. Liu, Z. et al. Non-viral nanoparticles for RNA interference: principles of design and practical guidelines. Adv. Drug Deliv Rev. 174, 576–612 (2021).

    Google Scholar 

  13. Sangwan, A. et al. Size variations of mesoporous silica nanoparticle control uptake efficiency and delivery of AC2-derived DsRNA for protection against tomato leaf curl new Delhi virus. Plant. Cell. Rep. 42, 1571–1587 (2023).

    Google Scholar 

  14. Xu, Y. et al. Size effect of mesoporous silica nanoparticles on pesticide Loading, Release, and delivery in cucumber plants. Appl. Sci. 11, 575 (2021).

    Google Scholar 

  15. Cai, Y., Liu, Z., Wang, H., Meng, H. & Cao, Y. Mesoporous silica nanoparticles mediate SiRNA delivery for Long-Term Multi‐Gene Silencing in intact plants. Adv. Sci. 11, e2301358 (2024).

    Google Scholar 

  16. Chen, L. F., Brannigan, K., Clark, R. & Gilbertson, R. L. Characterization of curtoviruses associated with Curly top disease of tomato in California and monitoring for these viruses in beet leafhoppers. Plant. Dis. 94, 99–108 (2010).

    Google Scholar 

  17. Ohshima, K. et al. Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. J. Gen. Virol. 88, 298–315 (2007).

    Google Scholar 

  18. Strausbaugh, C. A., Wintermantel, W. M. & Gillen, A. M. Eujayl, I. A. Curly top survey in the Western united States. Phytopathology 98, 1212–1217 (2008).

    Google Scholar 

  19. Soto, M. J. & Gilbertson, R. L. Distribution and rate of movement of the curtovirus beet mild Curly top virus (Family Geminiviridae) in the beet leafhopper. Phytopathology 93, 478–484 (2003).

    Google Scholar 

  20. Majidi, A., Hamzehzarghani, H., Izadpanah, I. & Behjatnia, S. A. A. Interaction between beet Curly top Iran virus and the severe isolate of beet Curly top virus in three selective sugar beet cultivars. 99, 381–389 (2017).

  21. Lecoq, H. & Desbiez, C. Viruses of cucurbit crops in the mediterranean region: an ever-changing picture. Adv. Virus Res. 84, 67–126 (2012).

    Google Scholar 

  22. Nomura, K., Ohshima, K., Anai, T. & Uekusa, H. Kita, N. RNA Silencing of the introduced coat protein gene of turnip mosaic virus confers Broad-Spectrum resistance in Transgenic Arabidopsis. Phytopathology 94, 730–736 (2004).

    Google Scholar 

  23. Jan, F. J., Pang, S. Z., Fagoaga, C. & Gonsalves, D. Turnip mosaic potyvirus resistance in Nicotiana benthamiana derived by post-transcriptional gene Silencing. Transgenic Res. 8, 203–213 (1999).

    Google Scholar 

  24. Frischmuth, T. & Stanley, J. Beet Curly top virus symptom amelioration in Nicotiana benthamiana transformed with a naturally occurring viral subgenomic DNA. Virology 200, 826–830 (1994).

    Google Scholar 

  25. Ali, Z. et al. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 1–11 (2015).

    Google Scholar 

  26. Delgado-Martín, J., Ruiz, L., Janssen, D. & Velasco, L. Exogenous application of DsRNA for the control of viruses in cucurbits. Front. Plant. Sci. 13, 895953 (2022).

    Google Scholar 

  27. Frascati, F. et al. Exogenous application of DsRNA for protection against tomato leaf curl new Delhi virus. Viruses 16, 436 (2024).

    Google Scholar 

  28. Delgado-Martín, J., Delgado-olidén, A. & Velasco, L. Carbon Dots boost DsRNA delivery in plants and increase local and systemic SiRNA production. Int. J. Mol. Sci. 23, 5338 (2022).

    Google Scholar 

  29. Weinberger, C. et al. The structure of water in silica Mesopores – Influence of the pore wall Polarity. Adv. Mater. Interfaces. 9, 2200245 (2022).

    Google Scholar 

  30. Keil, W. et al. Thermostable water reservoirs in the interlayer space of a sodium Hectorite clay through the intercalation of γ-aminopropyl(dimethyl)ethoxysilane in toluene. Phys. Chem. Chem. Phys. 24, 477–487 (2021).

    Google Scholar 

  31. Behzadi, F. et al. Stability and antimicrobial activity of Nisin-Loaded mesoporous silica nanoparticles: A Game-Changer in the war against maleficent microbes. J. Agric. Food Chem. 66, 4233–4243 (2018).

    Google Scholar 

  32. Heidari, R., Khosravian, P., Mirzaei, S. A. & Elahian, F. SiRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci. Rep. 11, 20531 (2021).

    Google Scholar 

  33. Choi, K. et al. Chromium removal from aqueous solution by a PEI-silica nanocomposite. Sci. Rep. 8, 1–10 (2018).

  34. Gisbert-Garzarán, M. & Vallet-Regí, M. Influence of the surface functionalization on the fate and performance of mesoporous silica nanoparticles. Nanomaterials 2020. 10, Page 916 (10), 916 (2020).

    Google Scholar 

  35. Jeppu, G. P. & Clement, T. P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 129–130, 46–53 (2012).

    Google Scholar 

  36. Zolghadrnasab, M., Mousavi, A., Farmany, A. & Arpanaei, A. Ultrasound-mediated gene delivery into suspended plant cells using polyethyleneimine-coated mesoporous silica nanoparticles. Ultrason. Sonochem. 73, 105507 (2021).

    Google Scholar 

  37. Schwartz, S. H., Hendrix, B., Hoffer, P., Sanders, R. A. & Zheng, W. Carbon Dots for efficient small interfering RNA delivery and gene Silencing in plants. Plant. Physiol. 184, 647–657 (2020).

    Google Scholar 

  38. Xu, X. et al. Evaluation of the anti-viral efficacy of three different DsRNA nanoparticles against potato virus Y using various delivery methods. Ecotoxicol. Environ. Saf. 255, 114775 (2023).

    Google Scholar 

  39. Melita, O. et al. Topical application of double-stranded RNA molecules deriving from tomato yellow leaf curl virus reduces cognate virus infection in tomato. Biol. Plant. 65, 100–110 (2021).

    Google Scholar 

  40. Namgial, T., Kaldis, A., Chakraborty, S. & Voloudakis, A. Topical application of double-stranded RNA molecules containing sequences of tomato leaf curl virus and cucumber mosaic virus confers protection against the cognate viruses. Physiol. Mol. Plant. Pathol. 108, 101432 (2019).

    Google Scholar 

  41. Rego-Machado, C. M. et al. SiRNA biogenesis and advances in topically applied DsRNA for controlling virus infections in tomato plants. Sci. Rep. 10, 22277 (2020).

    Google Scholar 

  42. Montazeri, R. & Malboobi, M. A. Shams-bakhsh, M. Resistance induced by viral sense, anti-sense, and hairpin constructs against beet Curly top virus and beet Curly top Iran virus. Iran. J. Biotechnol. 22, 50–61 (2024).

    Google Scholar 

  43. Yang, X., Li, Y. & Wang, A. Research advances in potyviruses: from the laboratory bench to the field. Annu. Rev. Phytopathol. 59, 1–29 (2021).

    Google Scholar 

  44. Sun, Z. N., Song, Y. Z., Yin, G. H., Zhu, C. X. & Wen, F. J. Hprnas derived from different regions of the Nib gene have different abilities to protect tobacco from infection with potato virus y. J. Phytopathol. 158, 566–568 (2010).

    Google Scholar 

  45. Worrall, E. A. et al. Exogenous application of RNAi-inducing double-stranded RNA inhibits aphid-mediated transmission of a plant virus. Front. Plant. Sci. 10, 265 (2019).

    Google Scholar 

  46. Rêgo-Machado, C. M., Inoue-Nagata, A. K. & Nakasu, E. Y. T. Topical application of DsRNA for plant virus control: a review. Trop. Plant. Pathol. 48, 11–22 (2022).

    Google Scholar 

  47. Tenllado, F. & Dı́az-Ruı́z, J. R. Double-Stranded RNA-Mediated interference with plant virus infection. J. Virol. 75, 12288–12297 (2001).

    Google Scholar 

  48. Yoon, J. et al. Double-stranded RNA confers resistance to pepper mottle virus in Nicotiana benthamiana. Appl. Biol. Chem. 64, 1–8 (2021).

    Google Scholar 

  49. Hu, J., Xiong, J., Zhao, Z. & Wang, X. Carbon Dots promote plant growth via coordinated regulation of nutrient uptake and photosynthesis: evidence from multivariate modeling. Bioresour Technol. 440, 133515 (2026).

    Google Scholar 

  50. Cheng, W. et al. Closed-loop enhancement of plant photosynthesis via biomass-derived carbon Dots in biohybrids. Commun Mater 6, (2025).

  51. Shivashakarappa, K. et al. DNA delivery into plant tissues using carbon Dots made from citric acid and β-alanine. Front Chem 13 (2025).

  52. Bachman, P., Fischer, J., Song, Z., Urbanczyk-Wochniak, E. & Watson, G. Environmental fate and dissipation of applied DsRNA in Soil, aquatic Systems, and plants. Front. Plant. Sci. 11, 21 (2020).

    Google Scholar 

  53. Ahn, S. J., Donahue, K., Koh, Y., Martin, R. R. & Choi, M. Y. Microbial-Based Double-Stranded RNA production to develop Cost-Effective RNA interference application for insect pest management. Int. J. Insect Sci. 11, 117954331984032 (2019).

    Google Scholar 

  54. Sánchez, F., Martínez-Herrera, D., Aguilar, I. & Ponz, F. Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis Thaliana and local lesion hosts. Virus Res. 55, 207–219 (1998).

    Google Scholar 

  55. Walsh, J. A. Genetic control of immunity to turnip mosaic virus in winter oilseed rape (Brassica Napus ssp. oleifera) and the effect of foreign isolates of the virus. Ann. Appl. Biol. 115, 89–99 (1989).

    Google Scholar 

  56. Briddon, R. W. et al. Comparison of a beet Curly top virus isolate originating from the old world with those from the new world. Eur. J. Plant. Pathol. 104, 77–84 (1998).

    Google Scholar 

  57. Taebnia, N. et al. The effect of mesoporous silica nanoparticle surface chemistry and concentration on the α-synuclein fibrillation. RSC Adv. 5, 60966–60974 (2015).

    Google Scholar 

  58. Abramoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  59. Campbell, A., Cardine, V., Hines, D. & Kerns, S. Fitting ODE parameters to data using excel- using regression to fit complex models in excel. (2007). https://eng.libretexts.org/@go/page/22371

  60. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25, 402–408 (2001).

    Google Scholar 

  61. Delgado-Martín, J. & Velasco, L. An efficient DsRNA constitutive expression system in Escherichia coli. Appl. Microbiol. Biotechnol. 105, 6381–6393 (2021).

    Google Scholar 

  62. Accotto, G. P., Navas-Castillo, J., Noris, E., Moriones, E. & Louro, D. Typing of tomato yellow leaf curl viruses in Europe. Eur. J. Plant. Pathol. 106 (2000).

Download references