Cathelicidin LL37-loaded extracellular vesicles from Edwardsiella piscicida promote antibacterial and wound-healing activity

cathelicidin-ll37-loaded-extracellular-vesicles-from-edwardsiella-piscicida-promote-antibacterial-and-wound-healing-activity
Cathelicidin LL37-loaded extracellular vesicles from Edwardsiella piscicida promote antibacterial and wound-healing activity

References

  1. Zou, C., Zhang, Y., Liu, H., Wu, Y. & Zhou, X. Extracellular vesicles: recent insights into the interaction between host and pathogenic bacteria. Front. immunol. 13. https://doi.org/10.3389/fimmu.2022.840550 (2022).

  2. Xie, J., Li, Q., Haesebrouck, F., Van Hoecke, L. & Vandenbroucke, R. E. The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol. 40, 1173–1194. https://doi.org/10.1016/j.tibtech.2022.03.005 (2022).

    Google Scholar 

  3. Wen, M. et al. Bacterial extracellular vesicles: A position paper by the microbial vesicles task force of the Chinese society for extracellular vesicles. Interdiscip Med. 1, e20230017. https://doi.org/10.1002/INMD.20230017 (2023).

    Google Scholar 

  4. Liu, H. et al. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: advances and perspectives. Bioact Mater. 14, 169–181. https://doi.org/10.1016/j.bioactmat.2021.12.006 (2022).

    Google Scholar 

  5. Liu, C. et al. Unveiling clinical applications of bacterial extracellular vesicles as natural nanomaterials in disease diagnosis and therapeutics. Acta Biomater. 180, 18–45. https://doi.org/10.1016/j.actbio.2024.04.022 (2024).

    Google Scholar 

  6. Gao, J., Su, Y. & Wang, Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv. Drug Deliv Rev. 186, 114340. https://doi.org/10.1016/j.addr.2022.114340 (2022).

    Google Scholar 

  7. Gao, J., Dong, X. & Wang, Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods 177, 114–125. https://doi.org/10.1016/j.ymeth.2019.11.012 (2020).

    Google Scholar 

  8. Huang, W. et al. Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism. JCR 317, 1–22. https://doi.org/10.1016/j.jconrel.2019.11.017 (2020).

    Google Scholar 

  9. Kadurugamuwa, J. L. & Beveridge, T. J. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J. Bacteriol. 178, 2767–2774. https://doi.org/10.1128/jb.178.10.2767-2774.1996 (1996).

    Google Scholar 

  10. Han, G., Huang, T., Liu, X., Liu, R. & Bacteriophage EPP-1, a potential antibiotic alternative for controlling edwardsiellosis caused by Edwardsiella piscicida while mitigating drug-resistant gene dissemination. Sci. Rep. 14, 9399. https://doi.org/10.1038/s41598-024-60214-3 (2024).

    Google Scholar 

  11. Sáenz, J. S. et al. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome 7, 24. https://doi.org/10.1186/s40168-019-0632-7 (2019).

    Google Scholar 

  12. Zeng, Q., Liao, C., Terhune, J. & Wang, L. Impacts of florfenicol on the microbiota landscape and resistome as revealed by metagenomic analysis. Microbiome 7, 155. https://doi.org/10.1186/s40168-019-0773-8 (2019).

    Google Scholar 

  13. Fumakia, M. & Ho, E. A. Nanoparticles encapsulated with LL37 and Serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol. Pharm. 13, 2318–2331. https://doi.org/10.1021/acs.molpharmaceut.6b00099 (2016).

    Google Scholar 

  14. Ramos, R. et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides 32, 1469–1476. https://doi.org/10.1016/j.peptides.2011.06.005 (2011).

  15. Neshani, A. et al. LL-37: review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Rep. 17, 100519. https://doi.org/10.1016/j.genrep.2019.100519 (2019).

    Google Scholar 

  16. Dias, M. K. H. M. et al. Exploring the proteomic landscape and Immunomodulatory functions of Edwardsiella piscicida derived extracellular vesicles. J. Microbiol. Biotechnol. 35 https://doi.org/10.4014/jmb.2410.10001 (2025).

  17. López-García, J., Lehocký, M., Humpolíček, P. & Sáha, P. HaCaT keratinocytes response on antimicrobial Atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 5, 43–57. https://doi.org/10.3390/jfb5020043 (2014).

    Google Scholar 

  18. Jayathilaka, E. H. T. T. et al. Octominin: an antibacterial and anti-biofilm peptide for controlling the multidrug resistance and pathogenic Streptococcus parauberis. Fish. Shellfish Immunol. 110, 23–34. https://doi.org/10.1016/j.fsi.2020.12.017 (2021).

    Google Scholar 

  19. Moghaddam, Z. S. et al. Bacterial extracellular vesicles: bridging pathogen biology and therapeutic innovation. Acta Biomater. https://doi.org/10.1016/j.actbio.2025.05.028 (2025).

    Google Scholar 

  20. Xie, J., Haesebrouck, F., Van Hoecke, L. & Vandenbroucke, R. E. Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol. 31, 1206–1224. https://doi.org/10.1016/j.tim.2023.05.010 (2023).

    Google Scholar 

  21. Jiang, B. et al. Microbial extracellular vesicles contribute to antimicrobial resistance. PLoS Pathog. 20, e1012143. https://doi.org/10.1371/journal.ppat.1012143 (2024).

    Google Scholar 

  22. Huan, Y., Kong, Q., Mou, H. & Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 11 https://doi.org/10.3389/fmicb.2020.582779 (2020).

  23. Ridyard, K. E. & Overhage, J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiot. (Basel Switzerland). 10 https://doi.org/10.3390/antibiotics10060650 (2021).

  24. Aidoukovitch, A., Bankell, E., Svensson, D. & Nilsson, B. O. Vitamin D triggers hCAP18/LL-37 production: implications for LL-37-induced human osteoblast cytotoxicity. BBRC 712–713. https://doi.org/10.1016/j.bbrc.2024.149962 (2024).

  25. Rather, I. A., Sabir, J. S. M., Asseri, A. H. & Ali, S. Antifungal activity of human Cathelicidin LL-37, a membrane disrupting peptide, by triggering oxidative stress and cell cycle arrest in Candida auris. J. Fungi. 8, 204. https://doi.org/10.3390/jof8020204 (2022).

    Google Scholar 

  26. Yang, X. et al. Chitosan hydrogel encapsulated with LL-37 peptide promotes deep tissue injury healing in a mouse model. Mil Med. Res. 7, 20. https://doi.org/10.1186/s40779-020-00249-5 (2020).

    Google Scholar 

  27. Yang, B. et al. Significance of LL-37 on immunomodulation and disease outcome. Biomed Res. Int. 8349712, (2020). https://doi.org/10.1155/2020/8349712 (2020).

  28. Hou, S. et al. Chlamydial plasmid-encoded virulence factor Pgp3 interacts with human Cathelicidin peptide LL-37 to modulate immune response. Microbes Infect. 21, 50–55. https://doi.org/10.1016/j.micinf.2018.06.003 (2019).

    Google Scholar 

  29. Steinstraesser, L. et al. Skin electroporation of a plasmid encoding hCAP-18/LL-37 host defense peptide promotes wound healing. Mol. Ther. 22, 734–742. https://doi.org/10.1038/mt.2013.258 (2014).

    Google Scholar 

  30. Grönberg, A., Mahlapuu, M., Ståhle, M., Whately-Smith, C. & Rollman, O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: A randomized, placebo-controlled clinical trial. Wound Repair. Regen. 22, 613–621. https://doi.org/10.1111/wrr.12211 (2014).

    Google Scholar 

  31. Ogawa, Y. et al. Stability of human salivary extracellular vesicles containing dipeptidyl peptidase IV under simulated Gastrointestinal tract conditions. Biochem. Biophys. Rep. 27, 101034. https://doi.org/10.1016/j.bbrep.2021.101034 (2021).

    Google Scholar 

  32. Zhang, M. et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101, 321–340. https://doi.org/10.1016/j.biomaterials.2016.06.018 (2016).

    Google Scholar 

  33. Midekessa, G. et al. Zeta potential of extracellular vesicles: toward Understanding the attributes that determine colloidal stability. ACS Omega. 5, 16701–16710. https://doi.org/10.1021/acsomega.0c01582 (2020).

    Google Scholar 

  34. Habibi, A., Davari, A. & Isazadeh, K. A novel LL-37@NH2@Fe3O4 inhibits the proliferation of the leukemia K562 cells: in-vitro study. Sci. Rep. 14, 22245. https://doi.org/10.1038/s41598-024-71946-7 (2024).

    Google Scholar 

  35. Chatterjee, S. in Oxidative Stress and Biomaterials (ed D. Allan Butterfield Thomas Dziubla) 35–58Academic Press, (2016).

  36. Joo, H. S., Fu, C. I. & Otto, M. Bacterial strategies of resistance to antimicrobial peptides. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371 https://doi.org/10.1098/rstb.2015.0292 (2016).

  37. Bae, J. et al. Pathophysiological differences of Edwardsiella piscicida at two different culture temperatures. Korean Soc. Life Sci. 35, 105–112. https://doi.org/10.5352/JLS.2025.35.2.105 (2025).

    Google Scholar 

  38. Zhang, R. et al. ArnB mediates CAMP resistance and in vivo colonization in the fish pathogen Edwardsiella piscicida. Aquac 576, 739855. https://doi.org/10.1016/j.aquaculture.2023.739855 (2023).

    Google Scholar 

  39. Ibrahim, U. H. et al. Engineered extracellular vesicles coated with an antimicrobial peptide for advanced control of bacterial sepsis. J. Ex. Bio. 3, e70000. https://doi.org/10.1002/jex2.70000 (2024).

    Google Scholar 

  40. Sivanantham, A. et al. Caveolin-1 regulates OMV-induced macrophage pro-inflammatory activation and multiple Toll-like receptors. Front. immunol. 14, 1044834. https://doi.org/10.3389/fimmu.2023.1044834 (2023).

    Google Scholar 

  41. Suri, K., D’Souza, A., Huang, D., Bhavsar, A. & Amiji, M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater. 22, 551–566. https://doi.org/10.1016/j.bioactmat.2022.10.024 (2023).

    Google Scholar 

  42. Tabarsa, M. et al. The activation of NF-κB and MAPKs signaling pathways of RAW264.7 murine macrophages and natural killer cells by fucoidan from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 148, 56–67. https://doi.org/10.1016/j.ijbiomac.2020.01.125 (2020).

    Google Scholar 

  43. Lubkowska, A., Pluta, W., Strońska, A. & Lalko, A. Role of heat shock proteins (HSP70 and HSP90) in viral infection. Int. J. Mol. Sci. 22, 9366. https://doi.org/10.3390/ijms22179366 (2021).

    Google Scholar 

  44. Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332. https://doi.org/10.1038/s41573-019-0058-8 (2020).

    Google Scholar 

  45. Xi, L. et al. Cathelicidin LL-37 promotes wound healing in diabetic mice by regulating TFEB-dependent autophagy. Peptides 175, 171183. https://doi.org/10.1016/j.peptides.2024.171183 (2024).

    Google Scholar 

  46. Miranda, E. et al. Efficacy of LL-37 cream in enhancing healing of diabetic foot ulcer: a randomized double-blind controlled trial. Arch. Dermatol. Res. 315, 2623–2633. https://doi.org/10.1007/s00403-023-02657-8 (2023).

    Google Scholar 

  47. Hajam, I. A., Dar, P. A., Shahnawaz, I., Jaume, J. C. & Lee, J. H. Bacterial flagellin—a potent Immunomodulatory agent. Exp. Mol. Med. 49, e373–e373. https://doi.org/10.1038/emm.2017.172 (2017).

    Google Scholar 

  48. Gao, N., Kumar, A., Jyot, J. & Yu, F. S. Flagellin-induced corneal antimicrobial peptide production and wound repair involve a novel NF-κB–independent and EGFR-dependent pathway. Plos One. 5, e9351. https://doi.org/10.1371/journal.pone.0009351 (2010).

    Google Scholar 

  49. Pei, W. et al. Extracellular HSP60 triggers tissue regeneration and wound healing by regulating inflammation and cell proliferation. NPJ Regen Med. 1, 16013. https://doi.org/10.1038/npjregenmed.2016.13 (2016).

    Google Scholar 

  50. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).

    Google Scholar 

  51. Edirisinghe, S. L. et al. Spirulina maxima derived marine pectin promotes the in vitro and in vivo regeneration and wound healing in zebrafish. Fish. Shellfish Immunol. 107, 414–425. https://doi.org/10.1016/j.fsi.2020.10.008 (2020).

    Google Scholar 

Download references