References
-
Zhao, C., Zhang, H., Song, C., Zhu, J. K. & Shabala, S. Mechanisms of plant responses and adaptation to soil salinity. Innov 1, 100017 (2020).
-
Cárdenas Pérez, S. et al. Salinity-driven changes in salicornia cell wall nanomechanics and lignin composition. Environ. Exp. Bot. 218, 105606 (2024).
-
Burton, R. A., Gidley, M. J. & Fincher, G. B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6, 724–732 (2010).
-
Cosgrove, D. J. Plant expansins: diversity and interactions with plant cell walls. Curr. Opin. Plant. Biol. 25, 162–172 (2015).
-
Barbez, E., Dünser, K., Gaidora, A., Lendl, T. & Busch, W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis Thaliana. Proc. Natl. Acad. Sci. U S A. 114, E4884–E4893 (2017).
-
Mendis, C. L., Padmathilake, R. E. & Attanayake, R. N. Learning from salicornia: Physiological, Biochemical, and molecular mechanisms of salinity tolerance. MDPI Mol. Sci. MDPI 3–8 (2025).
-
Tenhaken, R. Cell wall remodeling under abiotic stress. Front. Plant. Sci. 5, 1–9 (2015).
-
Cosgrove, D. J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005). (2005).
-
Liu, J. et al. Cell wall components and extensibility regulate root growth in Suaeda Salsa and spinacia Oleracea under salinity. MDPI Plants. 11, 1–13 (2022).
-
Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant. Biol. 11, 266–277 (2008).
-
Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. Lignin biosynthesis and structure. Plant. Physiol. 153, 895–905 (2010).
-
Liu, Q., Luo, L., Zheng, L. & Lignins Biosynthesis and biological functions in plants. Int J. Mol. Sci 19, (2018).
-
Cybulska, I. et al. Chemical characterization and hydrothermal pretreatment of salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential. Bioresour Technol. 153, 165–172 (2014).
-
Santos, R. B., Capanema, E. A., Balakshin, M. Y., Chang, H. M. & Jameel, H. Lignin structural variation in hardwood species. J. Agric. Food Chem. 60, 4923–4930 (2012).
-
Lourenço, A. et al. Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass Bioenerg. 76, 86–95 (2015).
-
Han, X. et al. Lignin biosynthesis and accumulation in response to abiotic stresses in Woody plants. For Res 2, (2022).
-
Bose, S. K., Francis, R. C., Govender, M., Bush, T. & Spark, A. Bioresource technology lignin content versus syringyl to guaiacyl ratio amongst poplars. Bioresour Technol. 100, 1628–1633 (2009).
-
Dumitrache, A. et al. Consolidated bioprocessing of Populus using clostridium (Ruminiclostridium) thermocellum: A case study on the impact of lignin composition and structure. Biotechnol. Biofuels. 9, 1–14 (2016).
-
Ďurkovič, J., Kačík, F., Husárová, H., Mamoňová, M. & Čaňová, I. Cell wall compositional and vascular traits of hybrid Poplar wood in micropropagated plants and plants propagated from root cuttings. New. For. 51, 119–135 (2020).
-
Yoo, C. G. et al. Significance of lignin S/G ratio in biomass recalcitrance of Populus trichocarpa variants for bioethanol production. ACS Sustain. Chem. Eng. 6, 2162–2168 (2018).
-
Van Eeckhout, A. et al. Polarimetric imaging microscopy for advanced inspection of vegetal tissues. Sci. Rep. 11, 1–12 (2021).
-
Orzoł, A. et al. The local environment influences salt tolerance differently in four salicornia Europaea L. inland populations. Sci. Rep. 15, 1–13 (2025).
-
Cárdenas Pérez, S., Niedojadło, K., Mierek-Adamska, A., Dąbrowska, G. B. & Piernik, A. Maternal salinity influences anatomical parameters, pectin content, biochemical and genetic modifications of two salicornia Europaea populations under salt stress. Sci. Rep. 12, 1–16 (2022).
-
Cárdenas Pérez, S., Grigore, M. N. & Piernik, A. Prediction of salicornia Europaea L. biomass using a computer vision system to distinguish different salt-tolerant populations. BMC Plant. Biol 24, (2024).
-
Gallegos-Cerda, S. D. et al. Decoding salinity tolerance in salicornia Europaea L.: Image-Based oxidative phenotyping and histochemical mapping of pectin and lignin. 1–23 (2025).
-
El-Keblawy, A., Gairola, S. & Bhatt, A. Maternal salinity environment affects salt tolerance during germination in anabasis setifera: A facultative desert halophyte. J. Arid Land. 8, 254–263 (2016).
-
Lee, J. H. et al. The beneficial effect of salicornia herbacea extract and Isorhamnetin-3-O-glucoside on obesity. Processes 11, 1–13 (2023).
-
Cárdenas-Pérez, S., Piernik, A., Chanona-Pérez, J. J., Grigore, M. N. & Perea-Flores, M. J. An overview of the emerging trends of the salicornia L. genus as a sustainable crop. Environ Exp. Bot 191, (2021).
-
Lu, C., Napier, J. A., Clemente, T. E. & Cahoon, E. B. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr. Opin. Biotechnol. 22, 252–259 (2011).
-
Katel, S., Yadav, S. P. S., Oli, S., Adhikari, R. & Shreeya, S. Exploring the potential of salicornia: A halophyte’s impact on Agriculture, the Environment, and the economy. Peruv. J. Agron. 7, 220–238 (2023).
-
Patel, S. & Salicornia Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech. 6, 1–10 (2016).
-
Wilkoń-Michalska, J. Zmiany Sukcesyjne w rezerwacie halofitów Ciechocinek w Latach 1954-1965. Ochr Przyr Zakład Ochr Przyr PAN. 1970 (R. 35), 1970 (1921-2005).
-
Lubińska-Mielińska, S. et al. Inland salt marsh habitat restoration can be based on artificial flooding. Glob Ecol. Conserv 34, (2022).
-
Cárdenas-Pérez, S. et al. Image and fractal analysis as a tool for evaluating salinity growth response between two salicornia Europaea populations. BMC Plant. Biol 20, (2020).
-
Bruker NanoWizard ® AFM Handbook. JPK Instruments Tech. Note, Berlin, Ger. (2012).
-
Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).
-
Routier-Kierzkowska, A. L. et al. Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant. Physiol. 158, 1514–1522 (2012).
-
Cárdenas-Pérez, S. et al. Nanoindentation study on Apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innov. Food Sci. Emerg. Technol. 34, 234–242 (2016).
-
Kitin, P., Nakaba, S., Hunt, C. G., Lim, S. & Funada, R. Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems. AoB Plants. 12, 1–19 (2020).
-
Anderson, C. T., Carroll, A., Akhmetova, L. & Somerville, C. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant. Physiol. 152, 787–796 (2010).
-
Herburger, K. & Holzinger, A. Aniline blue and calcofluor white staining of Callose and cellulose in the streptophyte green algae zygnema and klebsormidium. Bio-Protocol 6, 6–10 (2016).
-
Goh, T. Y., Basah, S. N., Yazid, H., Aziz Safar, M. J. & Ahmad Saad, F. Performance analysis of image thresholding: Otsu technique. Meas. J. Int. Meas. Confed. 114, 298–307 (2018).
-
Niedojadło, K., Hyjek, M. & Bednarska-Kozakiewicz, E. Spatial and Temporal localization of homogalacturonans in hyacinthus orientalis L. ovule cells before and after fertilization. Plant. Cell. Rep. 34, 97–109 (2015).
-
Pradhan Mitra, P. & Loqué, D. Histochemical staining of Arabidopsis Thaliana secondary cell wall elements. J. Vis. Exp. 1–11. https://doi.org/10.3791/51381 (2014).
-
Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. & Templeton, D. Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005. (2008).
-
Kačíková, D., Kubovský, I., Ulbriková, N. & Kačík, F. The impact of thermal treatment on structural changes of Teak and Iroko wood lignins. Appl Sci 10, (2020).
-
Vermaas, J. V. et al. Passive membrane transport of lignin-related compounds. Proc. Natl. Acad. Sci. U. S. A. 116, 23117–23123 (2019).
-
Lv, S. et al. Multiple compartmentalization of sodium conferred salt tolerance in salicornia Europaea. Plant. Physiol. Biochem. 51, 47–52 (2012).
-
Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New. Phytol. 179, 945–963 (2008).
-
SigmaPlot Systat Software Inc – SigmaPlot. (2013). http://www.sigmaplot.co.uk/
-
XLSTAT. XLSTAT 2023 1.4 Basic | Software estadístico Excel. (2023). https://www.xlstat.com/en
-
Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant. Biol. 54, 519–546 (2003).
-
Beauzamy, L., Derr, J. & Boudaoud, A. Quantifying hydrostatic pressure in plant cells by using indentation with an atomic force microscope. Biophys. J. 108, 2448–2456 (2015).
-
Feng, W. et al. The FERONIA receptor kinase maintains Cell-Wall integrity during salt stress through Ca2 + Signaling. Curr. Biol. 28, 666–675e5 (2018).
-
Colin, L. et al. The cell biology of primary cell walls during salt stress. Plant. Cell. 35, 201–217 (2023).
-
Piernik, A., Hulisz, P. & Rokicka, A. Micropattern of halophytic vegetation on technogenic soils affected by the soda industry. Soil. Sci. Plant. Nutr. 61, 98–112 (2015).
-
Cosgrove, D. J. Diffuse growth of plant cell walls. Plant. Physiol. 176, 16–27 (2018).
-
Cosgrove, D. J. & Jarvis, M. C. Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant. Sci. 3, 1–7 (2012).
-
Vicré, M., Farrant, J. M. & Driouich, A. Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species. Plant. Cell. Environ. 27, 1329–1340 (2004).
-
Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 59, 651–681 (2008).
-
Le Gall, H. et al. Cell wall metabolism in response to abiotic stress. MDPI Plants. 4, 112–166 (2015).
-
Lopes, M., Sanches-Silva, A., Castilho, M., Cavaleiro, C. & Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 63, 1078–1101 (2023).
-
Castagna, A. et al. Nutritional Composition and Bioactivity of Salicornia europaea L. Plants Grown in Monoculture or Intercropped with Tomato Plants in Salt-Affected Soils. Horticulturae 8, (2022).
-
Wolf, S., Mouille, G. & Pelloux, J. Homogalacturonan methyl-esterification and plant development. Mol. Plant. 2, 851–860 (2009).
-
Caffall, K. H. & Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879–1900 (2009).
-
Willats, W. G. T., Knox, J. P., Mikkelsen, J. D. & Pectin New insights into an old polymer are starting to gel. Trends Food Sci. Technol. 17, 97–104 (2006).
-
Yapo, B. M. Pectic substances: from simple pectic polysaccharides to complex pectins – A new hypothetical model. Carbohydr. Polym. 86, 373–385 (2011).
-
Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R. & López-Franco, Y. & Rascón-Chu, A. Pectin and pectin-based composite materials: beyond food texture. MDPI Mol 23, (2018).
-
Maxwell, E. G., Belshaw, N. J., Waldron, K. W. & Morris, V. J. Pectin – An emerging new bioactive food polysaccharide. Trends Food Sci. Technol. 24, 64–73 (2012).
-
Latarullo, M. B. G., Tavares, E. Q. P., Maldonado, G. P., Leite, D. C. C. & Buckeridge, M. S. Pectins, endopolygalacturonases, and bioenergy. Front. Plant. Sci. 7, 1–7 (2016).
-
Lionetti, V. et al. Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc. Natl. Acad. Sci. U S A. 107, 616–621 (2010).
-
Wormit, A. & Usadel, B. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. J. Mol. Sci. 19, 1–19 (2018).
-
Moura, J. C. M. S., Bonine, C. A. V., de Oliveira Fernandes Viana, J., Dornelas, M. C. & Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376 (2010).
-
Lee, M. et al. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J. 38, 1–17 (2019).
-
Oliveira, D. M. et al. Cell wall remodeling under salt stress: insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant. Cell. Environ. 43, 2172–2191 (2020).
-
Dabravolski, S. A. & Isayenkov, S. V. The regulation of plant cell wall organisation under salt stress. Front. Plant. Sci. 14, 1–16 (2023).
-
Chun, H. J. et al. Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress. Plant. Signal. Behav. 14, 1–4 (2019).
-
Cabane, M., Afif, D. & Hawkins, S. Lignins and Abiotic Stresses. Advances in Botanical Research vol. 61Elsevier Ltd., (2012).
-
Liu, J., Zhang, W., Long, S. & Zhao, C. Maintenance of cell wall integrity under high salinity. Int. J. Mol. Sci. 22, 1–19 (2021).
-
Yuan, L. et al. A glutathione S-transferase regulates lignin biosynthesis and enhances salt tolerance in tomato. Plant. Physiol. 196, 2989–3006 (2024).
-
Cesarino, I. Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Curr. Opin. Biotechnol. 56, 209–214 (2019).
-
Yadav, S. & Chattopadhyay, D. Lignin: the Building block of defense responses to stress in plants. J. Plant. Growth Regul. 42, 6652–6666 (2023).
-
Li, X., Weng, J. K. & Chapple, C. Improvement of biomass through lignin modification. Plant. J. 54, 569–581 (2008).
-
Skyba, O., Douglas, C. J. & Mansfield, S. D. Syringyl-Rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl. Environ. Microbiol. 79, 2560–2571 (2013).
-
Sadeghifar, H. & Ragauskas, A. J. Lignin as a natural antioxidant: chemistry and applications. Macromol 5, 1–16 (2025).
-
Rossi, L. et al. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea Europaea cultivars Frantoio (salt-tolerant) and leccino (salt-sensitive). J. Plant. Physiol. 204, 8–15 (2016).
-
Karagoz, P. et al. Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: linking lignin source and processing with clinical indication. Biomass Convers. Biorefinery. 14, 26553–26574 (2024).
-
Ralph, J., Lapierre, C. & Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 56, 240–249 (2019).
-
Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science (80-) 344, (2014).
-
Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447 (2015).
-
Parida, A. K. & Das, A. B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 60, 324–349 (2005).
-
Shabala, S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 112, 1209–1221 (2013).
-
Thompson, D. S. & Islam, A. Plant cell wall hydration and plant physiology: an exploration of the consequences of direct effects of water deficit on the plant cell wall. MDPI Plants 10, (2021).
-
Cárdenas-Pérez, S. et al. Microstructure of Salicornia Bigelovii Stems under Photonic and Electron Microscopy. in Microscopy and Microanalysis vol. 26. (Cambridge University Press, 2020). (2020).
-
Lu, C. et al. The dynamic remodeling of plant cell wall in response to heat stress. Genes (Basel). 16, 1–15 (2025).
-
Ventura, Y., Eshel, A., Pasternak, D. & Sagi, M. The development of halophyte-based agriculture: past and present. Ann. Bot. 115, 529–540 (2015).
