Cell wall remodeling and polarized light analysis reveal ecotype-specific strategies in Salicornia europaea L. with biotechnological applications

cell-wall-remodeling-and-polarized-light-analysis-reveal-ecotype-specific-strategies-in-salicornia-europaea-l.-with-biotechnological-applications
Cell wall remodeling and polarized light analysis reveal ecotype-specific strategies in Salicornia europaea L. with biotechnological applications

References

  1. Zhao, C., Zhang, H., Song, C., Zhu, J. K. & Shabala, S. Mechanisms of plant responses and adaptation to soil salinity. Innov 1, 100017 (2020).

    Google Scholar 

  2. Cárdenas Pérez, S. et al. Salinity-driven changes in salicornia cell wall nanomechanics and lignin composition. Environ. Exp. Bot. 218, 105606 (2024).

    Google Scholar 

  3. Burton, R. A., Gidley, M. J. & Fincher, G. B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6, 724–732 (2010).

    Google Scholar 

  4. Cosgrove, D. J. Plant expansins: diversity and interactions with plant cell walls. Curr. Opin. Plant. Biol. 25, 162–172 (2015).

    Google Scholar 

  5. Barbez, E., Dünser, K., Gaidora, A., Lendl, T. & Busch, W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis Thaliana. Proc. Natl. Acad. Sci. U S A. 114, E4884–E4893 (2017).

    Google Scholar 

  6. Mendis, C. L., Padmathilake, R. E. & Attanayake, R. N. Learning from salicornia: Physiological, Biochemical, and molecular mechanisms of salinity tolerance. MDPI Mol. Sci. MDPI 3–8 (2025).

  7. Tenhaken, R. Cell wall remodeling under abiotic stress. Front. Plant. Sci. 5, 1–9 (2015).

    Google Scholar 

  8. Cosgrove, D. J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005). (2005).

  9. Liu, J. et al. Cell wall components and extensibility regulate root growth in Suaeda Salsa and spinacia Oleracea under salinity. MDPI Plants. 11, 1–13 (2022).

    Google Scholar 

  10. Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant. Biol. 11, 266–277 (2008).

    Google Scholar 

  11. Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. Lignin biosynthesis and structure. Plant. Physiol. 153, 895–905 (2010).

    Google Scholar 

  12. Liu, Q., Luo, L., Zheng, L. & Lignins Biosynthesis and biological functions in plants. Int J. Mol. Sci 19, (2018).

  13. Cybulska, I. et al. Chemical characterization and hydrothermal pretreatment of salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential. Bioresour Technol. 153, 165–172 (2014).

    Google Scholar 

  14. Santos, R. B., Capanema, E. A., Balakshin, M. Y., Chang, H. M. & Jameel, H. Lignin structural variation in hardwood species. J. Agric. Food Chem. 60, 4923–4930 (2012).

    Google Scholar 

  15. Lourenço, A. et al. Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass Bioenerg. 76, 86–95 (2015).

    Google Scholar 

  16. Han, X. et al. Lignin biosynthesis and accumulation in response to abiotic stresses in Woody plants. For Res 2, (2022).

  17. Bose, S. K., Francis, R. C., Govender, M., Bush, T. & Spark, A. Bioresource technology lignin content versus syringyl to guaiacyl ratio amongst poplars. Bioresour Technol. 100, 1628–1633 (2009).

    Google Scholar 

  18. Dumitrache, A. et al. Consolidated bioprocessing of Populus using clostridium (Ruminiclostridium) thermocellum: A case study on the impact of lignin composition and structure. Biotechnol. Biofuels. 9, 1–14 (2016).

    Google Scholar 

  19. Ďurkovič, J., Kačík, F., Husárová, H., Mamoňová, M. & Čaňová, I. Cell wall compositional and vascular traits of hybrid Poplar wood in micropropagated plants and plants propagated from root cuttings. New. For. 51, 119–135 (2020).

    Google Scholar 

  20. Yoo, C. G. et al. Significance of lignin S/G ratio in biomass recalcitrance of Populus trichocarpa variants for bioethanol production. ACS Sustain. Chem. Eng. 6, 2162–2168 (2018).

    Google Scholar 

  21. Van Eeckhout, A. et al. Polarimetric imaging microscopy for advanced inspection of vegetal tissues. Sci. Rep. 11, 1–12 (2021).

    Google Scholar 

  22. Orzoł, A. et al. The local environment influences salt tolerance differently in four salicornia Europaea L. inland populations. Sci. Rep. 15, 1–13 (2025).

    Google Scholar 

  23. Cárdenas Pérez, S., Niedojadło, K., Mierek-Adamska, A., Dąbrowska, G. B. & Piernik, A. Maternal salinity influences anatomical parameters, pectin content, biochemical and genetic modifications of two salicornia Europaea populations under salt stress. Sci. Rep. 12, 1–16 (2022).

    Google Scholar 

  24. Cárdenas Pérez, S., Grigore, M. N. & Piernik, A. Prediction of salicornia Europaea L. biomass using a computer vision system to distinguish different salt-tolerant populations. BMC Plant. Biol 24, (2024).

  25. Gallegos-Cerda, S. D. et al. Decoding salinity tolerance in salicornia Europaea L.: Image-Based oxidative phenotyping and histochemical mapping of pectin and lignin. 1–23 (2025).

  26. El-Keblawy, A., Gairola, S. & Bhatt, A. Maternal salinity environment affects salt tolerance during germination in anabasis setifera: A facultative desert halophyte. J. Arid Land. 8, 254–263 (2016).

    Google Scholar 

  27. Lee, J. H. et al. The beneficial effect of salicornia herbacea extract and Isorhamnetin-3-O-glucoside on obesity. Processes 11, 1–13 (2023).

    Google Scholar 

  28. Cárdenas-Pérez, S., Piernik, A., Chanona-Pérez, J. J., Grigore, M. N. & Perea-Flores, M. J. An overview of the emerging trends of the salicornia L. genus as a sustainable crop. Environ Exp. Bot 191, (2021).

  29. Lu, C., Napier, J. A., Clemente, T. E. & Cahoon, E. B. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr. Opin. Biotechnol. 22, 252–259 (2011).

    Google Scholar 

  30. Katel, S., Yadav, S. P. S., Oli, S., Adhikari, R. & Shreeya, S. Exploring the potential of salicornia: A halophyte’s impact on Agriculture, the Environment, and the economy. Peruv. J. Agron. 7, 220–238 (2023).

    Google Scholar 

  31. Patel, S. & Salicornia Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech. 6, 1–10 (2016).

    Google Scholar 

  32. Wilkoń-Michalska, J. Zmiany Sukcesyjne w rezerwacie halofitów Ciechocinek w Latach 1954-1965. Ochr Przyr Zakład Ochr Przyr PAN. 1970 (R. 35), 1970 (1921-2005).

  33. Lubińska-Mielińska, S. et al. Inland salt marsh habitat restoration can be based on artificial flooding. Glob Ecol. Conserv 34, (2022).

  34. Cárdenas-Pérez, S. et al. Image and fractal analysis as a tool for evaluating salinity growth response between two salicornia Europaea populations. BMC Plant. Biol 20, (2020).

  35. Bruker NanoWizard ® AFM Handbook. JPK Instruments Tech. Note, Berlin, Ger. (2012).

  36. Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Google Scholar 

  37. Routier-Kierzkowska, A. L. et al. Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant. Physiol. 158, 1514–1522 (2012).

    Google Scholar 

  38. Cárdenas-Pérez, S. et al. Nanoindentation study on Apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innov. Food Sci. Emerg. Technol. 34, 234–242 (2016).

    Google Scholar 

  39. Kitin, P., Nakaba, S., Hunt, C. G., Lim, S. & Funada, R. Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems. AoB Plants. 12, 1–19 (2020).

    Google Scholar 

  40. Anderson, C. T., Carroll, A., Akhmetova, L. & Somerville, C. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant. Physiol. 152, 787–796 (2010).

    Google Scholar 

  41. Herburger, K. & Holzinger, A. Aniline blue and calcofluor white staining of Callose and cellulose in the streptophyte green algae zygnema and klebsormidium. Bio-Protocol 6, 6–10 (2016).

    Google Scholar 

  42. Goh, T. Y., Basah, S. N., Yazid, H., Aziz Safar, M. J. & Ahmad Saad, F. Performance analysis of image thresholding: Otsu technique. Meas. J. Int. Meas. Confed. 114, 298–307 (2018).

    Google Scholar 

  43. Niedojadło, K., Hyjek, M. & Bednarska-Kozakiewicz, E. Spatial and Temporal localization of homogalacturonans in hyacinthus orientalis L. ovule cells before and after fertilization. Plant. Cell. Rep. 34, 97–109 (2015).

    Google Scholar 

  44. Pradhan Mitra, P. & Loqué, D. Histochemical staining of Arabidopsis Thaliana secondary cell wall elements. J. Vis. Exp. 1–11. https://doi.org/10.3791/51381 (2014).

  45. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. & Templeton, D. Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005. (2008).

  46. Kačíková, D., Kubovský, I., Ulbriková, N. & Kačík, F. The impact of thermal treatment on structural changes of Teak and Iroko wood lignins. Appl Sci 10, (2020).

  47. Vermaas, J. V. et al. Passive membrane transport of lignin-related compounds. Proc. Natl. Acad. Sci. U. S. A. 116, 23117–23123 (2019).

  48. Lv, S. et al. Multiple compartmentalization of sodium conferred salt tolerance in salicornia Europaea. Plant. Physiol. Biochem. 51, 47–52 (2012).

    Google Scholar 

  49. Flowers, T. J. & Colmer, T. D. Salinity tolerance in halophytes. New. Phytol. 179, 945–963 (2008).

    Google Scholar 

  50. SigmaPlot Systat Software Inc – SigmaPlot. (2013). http://www.sigmaplot.co.uk/

  51. XLSTAT. XLSTAT 2023 1.4 Basic | Software estadístico Excel. (2023). https://www.xlstat.com/en

  52. Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant. Biol. 54, 519–546 (2003).

    Google Scholar 

  53. Beauzamy, L., Derr, J. & Boudaoud, A. Quantifying hydrostatic pressure in plant cells by using indentation with an atomic force microscope. Biophys. J. 108, 2448–2456 (2015).

    Google Scholar 

  54. Feng, W. et al. The FERONIA receptor kinase maintains Cell-Wall integrity during salt stress through Ca2 + Signaling. Curr. Biol. 28, 666–675e5 (2018).

    Google Scholar 

  55. Colin, L. et al. The cell biology of primary cell walls during salt stress. Plant. Cell. 35, 201–217 (2023).

    Google Scholar 

  56. Piernik, A., Hulisz, P. & Rokicka, A. Micropattern of halophytic vegetation on technogenic soils affected by the soda industry. Soil. Sci. Plant. Nutr. 61, 98–112 (2015).

    Google Scholar 

  57. Cosgrove, D. J. Diffuse growth of plant cell walls. Plant. Physiol. 176, 16–27 (2018).

    Google Scholar 

  58. Cosgrove, D. J. & Jarvis, M. C. Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant. Sci. 3, 1–7 (2012).

    Google Scholar 

  59. Vicré, M., Farrant, J. M. & Driouich, A. Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species. Plant. Cell. Environ. 27, 1329–1340 (2004).

    Google Scholar 

  60. Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 59, 651–681 (2008).

    Google Scholar 

  61. Le Gall, H. et al. Cell wall metabolism in response to abiotic stress. MDPI Plants. 4, 112–166 (2015).

    Google Scholar 

  62. Lopes, M., Sanches-Silva, A., Castilho, M., Cavaleiro, C. & Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 63, 1078–1101 (2023).

    Google Scholar 

  63. Castagna, A. et al. Nutritional Composition and Bioactivity of Salicornia europaea L. Plants Grown in Monoculture or Intercropped with Tomato Plants in Salt-Affected Soils. Horticulturae 8, (2022).

  64. Wolf, S., Mouille, G. & Pelloux, J. Homogalacturonan methyl-esterification and plant development. Mol. Plant. 2, 851–860 (2009).

    Google Scholar 

  65. Caffall, K. H. & Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879–1900 (2009).

    Google Scholar 

  66. Willats, W. G. T., Knox, J. P., Mikkelsen, J. D. & Pectin New insights into an old polymer are starting to gel. Trends Food Sci. Technol. 17, 97–104 (2006).

    Google Scholar 

  67. Yapo, B. M. Pectic substances: from simple pectic polysaccharides to complex pectins – A new hypothetical model. Carbohydr. Polym. 86, 373–385 (2011).

    Google Scholar 

  68. Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R. & López-Franco, Y. & Rascón-Chu, A. Pectin and pectin-based composite materials: beyond food texture. MDPI Mol 23, (2018).

  69. Maxwell, E. G., Belshaw, N. J., Waldron, K. W. & Morris, V. J. Pectin – An emerging new bioactive food polysaccharide. Trends Food Sci. Technol. 24, 64–73 (2012).

    Google Scholar 

  70. Latarullo, M. B. G., Tavares, E. Q. P., Maldonado, G. P., Leite, D. C. C. & Buckeridge, M. S. Pectins, endopolygalacturonases, and bioenergy. Front. Plant. Sci. 7, 1–7 (2016).

    Google Scholar 

  71. Lionetti, V. et al. Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc. Natl. Acad. Sci. U S A. 107, 616–621 (2010).

    Google Scholar 

  72. Wormit, A. & Usadel, B. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. J. Mol. Sci. 19, 1–19 (2018).

    Google Scholar 

  73. Moura, J. C. M. S., Bonine, C. A. V., de Oliveira Fernandes Viana, J., Dornelas, M. C. & Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376 (2010).

    Google Scholar 

  74. Lee, M. et al. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J. 38, 1–17 (2019).

    Google Scholar 

  75. Oliveira, D. M. et al. Cell wall remodeling under salt stress: insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant. Cell. Environ. 43, 2172–2191 (2020).

    Google Scholar 

  76. Dabravolski, S. A. & Isayenkov, S. V. The regulation of plant cell wall organisation under salt stress. Front. Plant. Sci. 14, 1–16 (2023).

    Google Scholar 

  77. Chun, H. J. et al. Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress. Plant. Signal. Behav. 14, 1–4 (2019).

    Google Scholar 

  78. Cabane, M., Afif, D. & Hawkins, S. Lignins and Abiotic Stresses. Advances in Botanical Research vol. 61Elsevier Ltd., (2012).

  79. Liu, J., Zhang, W., Long, S. & Zhao, C. Maintenance of cell wall integrity under high salinity. Int. J. Mol. Sci. 22, 1–19 (2021).

    Google Scholar 

  80. Yuan, L. et al. A glutathione S-transferase regulates lignin biosynthesis and enhances salt tolerance in tomato. Plant. Physiol. 196, 2989–3006 (2024).

    Google Scholar 

  81. Cesarino, I. Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Curr. Opin. Biotechnol. 56, 209–214 (2019).

    Google Scholar 

  82. Yadav, S. & Chattopadhyay, D. Lignin: the Building block of defense responses to stress in plants. J. Plant. Growth Regul. 42, 6652–6666 (2023).

    Google Scholar 

  83. Li, X., Weng, J. K. & Chapple, C. Improvement of biomass through lignin modification. Plant. J. 54, 569–581 (2008).

    Google Scholar 

  84. Skyba, O., Douglas, C. J. & Mansfield, S. D. Syringyl-Rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl. Environ. Microbiol. 79, 2560–2571 (2013).

    Google Scholar 

  85. Sadeghifar, H. & Ragauskas, A. J. Lignin as a natural antioxidant: chemistry and applications. Macromol 5, 1–16 (2025).

    Google Scholar 

  86. Rossi, L. et al. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea Europaea cultivars Frantoio (salt-tolerant) and leccino (salt-sensitive). J. Plant. Physiol. 204, 8–15 (2016).

    Google Scholar 

  87. Karagoz, P. et al. Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: linking lignin source and processing with clinical indication. Biomass Convers. Biorefinery. 14, 26553–26574 (2024).

    Google Scholar 

  88. Ralph, J., Lapierre, C. & Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 56, 240–249 (2019).

    Google Scholar 

  89. Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science (80-) 344, (2014).

  90. Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447 (2015).

    Google Scholar 

  91. Parida, A. K. & Das, A. B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 60, 324–349 (2005).

    Google Scholar 

  92. Shabala, S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 112, 1209–1221 (2013).

    Google Scholar 

  93. Thompson, D. S. & Islam, A. Plant cell wall hydration and plant physiology: an exploration of the consequences of direct effects of water deficit on the plant cell wall. MDPI Plants 10, (2021).

  94. Cárdenas-Pérez, S. et al. Microstructure of Salicornia Bigelovii Stems under Photonic and Electron Microscopy. in Microscopy and Microanalysis vol. 26. (Cambridge University Press, 2020). (2020).

  95. Lu, C. et al. The dynamic remodeling of plant cell wall in response to heat stress. Genes (Basel). 16, 1–15 (2025).

    Google Scholar 

  96. Ventura, Y., Eshel, A., Pasternak, D. & Sagi, M. The development of halophyte-based agriculture: past and present. Ann. Bot. 115, 529–540 (2015).

    Google Scholar 

Download references