Characterization and stability of plasmid DNA calcium nanoparticles using a simple formulation for gene therapy

characterization-and-stability-of-plasmid-dna-calcium-nanoparticles-using-a-simple-formulation-for-gene-therapy
Characterization and stability of plasmid DNA calcium nanoparticles using a simple formulation for gene therapy

References

  1. Kovtun, A., Heumann, R. & Epple, M. Calcium phosphate nanoparticles for the transfection of cells. Biomed. Mater. Eng. 19, 241–247 (2009).

    Google Scholar 

  2. Lee, D., Upadhye, K. & Kumta, P. N. Nano-sized calcium phosphate (CaP) carriers for non-viral gene deilvery. Mater. Sci. Engineering: B. 177, 289–302 (2012).

    Google Scholar 

  3. Abdellatif, A. A. et al. Non-coding RNA-directed therapeutics in lung cancer: Delivery technologies and clinical applications. Colloids Surf. B. 229, 113466 (2023).

    Google Scholar 

  4. Floyd, T. G., Gurnani, P. & Rho, J. Y. Characterisation of polymeric nanoparticles for drug delivery. Nanoscale 17, 7738–7752 (2025).

    Google Scholar 

  5. Shanahan, K., Coen, D. & Nafo, W. Polymer-based nanoparticles for cancer theranostics: Advances, challenges, and future perspectives. (2025).

  6. Waheed, I. et al. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front. Oncol. 14, 1296091 (2024).

    Google Scholar 

  7. Mehta, M. et al. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Mater. Au. 3, 600–619 (2023).

    Google Scholar 

  8. Peek, L. J., Middaugh, C. R. & Berkland, C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev. 60, 915–928 (2008).

    Google Scholar 

  9. Khosravi, D. K., Mozafari, M. R., Rashidi, L. & Mohammadi, M. Calcium based non-viral gene delivery: An overview of methodology and applications. (2010).

  10. Huang, D., He, B. & Mi, P. Calcium phosphate nanocarriers for drug delivery to tumors: Imaging, therapy and theranostics. Biomaterials Sci. 7, 3942–3960 (2019).

    Google Scholar 

  11. Shubhra, Q. T., Oyane, A., Araki, H., Nakamura, M. & Tsurushima, H. Calcium phosphate nanoparticles prepared from infusion fluids for stem cell transfection: Process optimization and cytotoxicity analysis. Biomaterials Sci. 5, 972–981 (2017).

    Google Scholar 

  12. Levingstone, T. J., Herbaj, S. & Dunne, N. J. Calcium phosphate nanoparticles for therapeutic applications in bone regeneration. Nanomaterials 9, 1570 (2019).

    Google Scholar 

  13. Roy, I., Mitra, S., Maitra, A. & Mozumdar, S. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J. Pharm. 250, 25–33 (2003).

    Google Scholar 

  14. Qiu, C. et al. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater. Today Bio 100501 (2022).

  15. Huang, X. et al. Characterization of calcium phosphate nanoparticles based on a pegylated chelator for gene delivery. ACS Appl. Mater. Interfaces. 9, 10435–10445 (2017).

    Google Scholar 

  16. Bai, S. et al. Connecting calcium-based nanomaterials and cancer: From diagnosis to therapy. Nano-micro Lett. 14, 145 (2022).

    Google Scholar 

  17. Krebs, M. D., Salter, E., Chen, E., Sutter, K. A. & Alsberg, E. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J. Biomedical Mater. Res. Part. A: Official J. Soc. Biomaterials Japanese Soc. Biomaterials Australian Soc. Biomaterials Korean Soc. Biomaterials. 92, 1131–1138 (2010).

    Google Scholar 

  18. Parveen, S., Misra, R. & Sahoo, S. K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Cancer 47–98 (2017).

  19. Panagiotou, T. & Fisher, R. Large Scale Manufacturing of Calcium Phosphate Nanoparticles for Medical Applications.

  20. Xu, X., Li, Z., Zhao, X., Keen, L. & Kong, X. Calcium phosphate nanoparticles-based systems for SiRNA delivery. Regenerative Biomaterials. 3, 187–195 (2016).

    Google Scholar 

  21. Trofimov, A. D., Ivanova, A. A., Zyuzin, M. V. & Timin, A. S. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives. Pharmaceutics 10, 167 (2018).

    Google Scholar 

  22. Pedraza, C. E. et al. The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials 29, 3384–3392 (2008).

    Google Scholar 

  23. Epple, M. et al. Application of calcium phosphate nanoparticles in biomedicine. J. Mater. Chem. 20, 18–23 (2010).

    Google Scholar 

  24. Park, J. et al. Quantitative analysis of calcium phosphate nanocluster growth using time-of-flight medium-energy-ion-scattering spectroscopy. ACS Cent. Sci. 4, 1253–1260 (2018).

    Google Scholar 

  25. Sokolova, V. & Epple, M. Biological and medical applications of calcium phosphate nanoparticles. Chemistry–A Eur. J. 27, 7471–7488 (2021).

    Google Scholar 

  26. Khan, M. A., Wu, V. M., Ghosh, S. & Uskoković, V. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly (l-lysine) as additives. J. Colloid Interface Sci. 471, 48–58 (2016).

    Google Scholar 

  27. Sokolova, V. V., Radtke, I., Heumann, R. & Epple, M. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials 27, 3147–3153 (2006).

    Google Scholar 

  28. Bisht, S., Bhakta, G., Mitra, S. & Maitra, A. pDNA loaded calcium phosphate nanoparticles: Highly efficient non-viral vector for gene delivery. Int. J. Pharm. 288, 157–168 (2005).

    Google Scholar 

  29. Liu, Y. et al. An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery. Int. J. Nanomed. 721–727 (2011).

  30. Zhao, D., Wang, C. Q., Zhuo, R. X. & Cheng, S. X. Modification of nanostructured calcium carbonate for efficient gene delivery. Colloids Surf. B. 118, 111–116 (2014).

    Google Scholar 

  31. Yasom, S. et al. The roles of HMGB1-produced DNA gaps in DNA protection and aging biomarker reversal. FASEB BioAdvances. 4, 408 (2022).

    Google Scholar 

  32. Yasom, S. et al. B1 SiRNA increases de Novo DNA methylation of B1 elements and promotes wound healing in diabetic rats. Front. Cell. Dev. Biology. 9, 802024 (2022).

    Google Scholar 

  33. Tsikourkitoudi, V. et al. Flame-made calcium phosphate nanoparticles with high drug loading for delivery of biologics. Molecules 25, 1747 (2020).

    Google Scholar 

  34. Sun, Z. et al. The potential of calcium phosphate nanoparticles as adjuvants and vaccine delivery vehicles. Front. Mater. 8, 788373 (2021).

    Google Scholar 

  35. Akombaetwa, N. et al. Current advances in lipid nanosystems intended for topical and transdermal drug delivery applications. Pharmaceutics 15, 656 (2023).

    Google Scholar 

  36. Epple, M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 77, 1–14 (2018).

    Google Scholar 

  37. Jaroenporn, S. et al. Long-term safety pharmacology and musculoskeletal changes of HMGB1 box A gene therapy in middle-aged monkeys. Vivo 39, 1965–1983 (2025).

    Google Scholar 

  38. Qiu, C. et al. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater. Today Bio. 17, 100501 (2022).

    Google Scholar 

  39. Sokolova, V. et al. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes. J. Nanopart. Res. 14, 1–10 (2012).

    Google Scholar 

  40. Bisht, S., Bhakta, G., Mitra, S. & Maitra, A. pDNA loaded calcium phosphate nanoparticles: Highly efficient non-viral vector for gene delivery. Int. J. Pharm. 288, 157–168. https://doi.org/10.1016/j.ijpharm.2004.07.035 (2005).

    Google Scholar 

  41. Olton, D. et al. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials 28, 1267–1279. https://doi.org/10.1016/j.biomaterials.2006.10.026 (2007).

    Google Scholar 

  42. Wang, L. & Nancollas, G. H. Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 108, 4628–4669. https://doi.org/10.1021/cr0782574 (2008).

    Google Scholar 

  43. Pedraza, C. E. et al. The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials 29, 3384–3392. https://doi.org/10.1016/j.biomaterials.2008.04.043 (2008).

    Google Scholar 

  44. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557. https://doi.org/10.1038/nmat2442 (2009).

    Google Scholar 

  45. Uskoković, V. & Uskoković, D. P. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. B Appl. Biomater. 96, 152–191. https://doi.org/10.1002/jbm.b.31746 (2011).

    Google Scholar 

  46. Rivas, M., Turon, P., Aleman, C., Puiggali, J. & Del Valle, L. J. Incorporation of functionalized calcium phosphate nanoparticles in living cells. J. Cluster Sci. 33, 2781–2795 (2022).

  47. Dautova, Y. et al. Fetuin-A and albumin alter cytotoxic effects of calcium phosphate nanoparticles on human vascular smooth muscle cells. PloS One. 9, e97565 (2014).

    Google Scholar 

  48. Jordan, I. K. Ethical issues in the genetic study of deafness. Ann. N Y Acad. Sci. 630, 236–239. https://doi.org/10.1111/j.1749-6632.1991.tb19593.x (1991).

    Google Scholar 

  49. Dorozhkin, S. V. & Epple, M. Biological and medical significance of calcium phosphates. Angew Chem. Int. Ed. Engl. 41, 3130–3146. https://doi.org/10.1002/1521-3773(20020902)41:17%3C3130::Aid-anie3130%3E3.0.Co;2-1 (2002).

    Google Scholar 

  50. Trenkenschuh, E. & Friess, W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur. J. Pharm. Biopharm. 165, 345–360 (2021).

    Google Scholar 

  51. Abdelwahed, W., Degobert, G., Stainmesse, S. & Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 58, 1688–1713 (2006).

    Google Scholar 

  52. Gatto, M. S. & Najahi-Missaoui, W. Lyophilization of nanoparticles, does it really work? Overview of the current status and challenges. Int. J. Mol. Sci. 24, 14041 (2023).

    Google Scholar 

  53. World Health Organization. Immunization in Practice: Module 3, The Cold Chain (WHO Document Ref. WHO/IVB/04.06). (WHO, 2004).

Download references