References
-
Moreau, A. et al. Physical mechanisms of red blood cell Splenic filtration. Proc. Natl. Acad. Sci. U S A. 120 (44), e2300095120. https://doi.org/10.1073/PNAS.2300095120/SUPPL_FILE/PNAS.2300095120.SM06.AVI (2023).
-
Minetti, G., Dorn, I., Köfeler, H., Perotti, C. & Kaestner, L. Insights from lipidomics into the terminal maturation of Circulating human reticulocytes. Cell. Death Discovery 2025. 11 (1), 1. https://doi.org/10.1038/s41420-025-02318-x (2025).
-
Mohandas, N. & Evans, E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23 (23, 1994), 787–818. https://doi.org/10.1146/ANNUREV.BB.23.060194.004035/CITE/REFWORKS (1994).
-
RA C. Abnormalities of cell-membrane fluidity in the pathogenesis of disease. N. Engl. J. Med. 297, 371–377 (2024). https://cir.nii.ac.jp/crid/1570572700582030592.
-
Buchwald, H., O’Dea, T. J., Menchaca, H. J., Michalek, V. N. & Rohde, T. D. Effect of plasma cholesterol on red blood cell oxygen transport. Clin. Exp. Pharmacol. Physiol. 27 (12), 951–955. https://doi.org/10.1046/J.1440-1681.2000.03383.X (2000).
-
Forsyth, A. M., Braunmüller, S., Wan, J., Franke, T. & Stone, H. A. The effects of membrane cholesterol and Simvastatin on red blood cell deformability and ATP release. Microvasc Res. 83 (3), 347–351. https://doi.org/10.1016/J.MVR.2012.02.004 (2012).
-
Doole, F. T., Kumarage, T., Ashkar, R. & Brown, M. F. Cholesterol stiffening of lipid membranes. J. Membrane Biology 2022. 255 (4), 4. https://doi.org/10.1007/S00232-022-00263-9 (2022).
-
Nemkov, T. et al. Circulating primitive murine erythroblasts undergo complex proteomic and metabolomic changes during terminal maturation. Blood Adv. 6 (10), 3072–3089. https://doi.org/10.1182/BLOODADVANCES.2021005975 (2022).
-
Moon, S. H. et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176 (3), 564. https://doi.org/10.1016/J.CELL.2018.11.011 (2018).
-
D’Alessandro, A. et al. Ferroptosis regulates hemolysis in stored murine and human red blood cells. Blood 145 (7), 765–783. https://doi.org/10.1182/BLOOD.2024026109 (2025).
-
Mahdi, A. et al. The red blood cell as a mediator of endothelial dysfunction in patients with Familial hypercholesterolemia and dyslipidemia. J. Intern. Med. 293 (2), 228. https://doi.org/10.1111/JOIM.13580 (2022).
-
Himbert, S. et al. Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity. PLoS One. 16 (11), e0259267. https://doi.org/10.1371/JOURNAL.PONE.0259267 (2021).
-
Peltier, S. et al. Proteostasis and metabolic dysfunction characterize a subset of storage-induced senescent erythrocytes targeted for post-transfusion clearance. J. Clin. Invest. 11 https://doi.org/10.1172/JCI183099 (2025).
-
Hawksworth, J. et al. Enhancement of red blood cell transfusion compatibility using CRISPR-mediated erythroblast gene editing. EMBO Mol. Med. 10 (6), e8454. https://doi.org/10.15252/emmm.201708454 (2018).
-
Giarratana, M. C. et al. Proof of principle for transfusion of in vitro-generated red blood cells. Blood 118 (19), 5071–5079. https://doi.org/10.1182/BLOOD-2011-06-362038 (2011).
-
Wilson, M. C. et al. Comparison of the proteome of adult and cord erythroid cells, and changes in the proteome following reticulocyte maturation. Mol. Cell. Proteomics. 15 (6), 1938–1946. https://doi.org/10.1074/mcp.M115.057315 (2016).
-
Moura, P. L. et al. Non-muscle myosin II drives vesicle loss during human reticulocyte maturation. Haematologica 103 (12), 1997–2007. https://doi.org/10.3324/HAEMATOL.2018.199083 (2018).
-
Bernecker, C. et al. Biomechanical properties of native and cultured red blood cells–Interplay of shape, structure and biomechanics. Front. Physiol. 13, 979298. https://doi.org/10.3389/FPHYS.2022.979298/FULL (2022).
-
Claessen, M. J. A. G. et al. Production and stability of cultured red blood cells depends on the concentration of cholesterol in culture medium. Sci. Rep. 2024. 14 (1), 1. https://doi.org/10.1038/s41598-024-66440-z (2024).
-
Satchwell, T. J. et al. Genetic manipulation of cell line derived reticulocytes enables dissection of host malaria invasion requirements. Nat. Commun. 10 (1). https://doi.org/10.1038/S41467-019-11790-W (2019).
-
Martins Freire, C. et al. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. Blood Adv. 8 (19), 5166–5178. https://doi.org/10.1182/BLOODADVANCES.2024012743/2232404/BLOODADVANCES.2024012743.PDF (2024).
-
Moura, P. L. et al. PIEZO1 gain-of-function mutations delay reticulocyte maturation in hereditary xerocytosis. Haematologica 105 (6), e268. https://doi.org/10.3324/HAEMATOL.2019.231159 (2020).
-
Bernecker, C. et al. Cholesterol deficiency causes impaired osmotic stability of cultured red blood cells. Front. Physiol. 10, 1529. https://doi.org/10.3389/fphys.2019.01529 (2019).
-
Zingariello, M. et al. Dexamethasone predisposes human erythroblasts toward impaired lipid metabolism and renders their ex vivo expansion highly dependent on plasma lipoproteins. Front. Physiol. 10 (APR), 281. https://doi.org/10.3389/fphys.2019.00281 (2019).
-
Griffiths, R. E. et al. Maturing reticulocytes internalize plasma membrane in Glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis. https://doi.org/10.1182/blood-2011-09-376475.
-
Kupzig, S., Parsons, S. F., Curnow, E., Anstee, D. J. & Blair, A. Superior survival of ex vivo cultured human reticulocytes following transfusion into mice. Haematologica 102 (3), 476–483. https://doi.org/10.3324/haematol.2016.154443 (2017).
-
Bruil, A., Beugeling, T., Feijen, J. & van Aken, W. G. The mechanisms of leukocyte removal by filtration. Transfus. Med. Rev. 9 (2), 145–166. https://doi.org/10.1016/S0887-7963(05)80053-7 (1995).
-
Malleret, B. et al. Significant Biochemical, biophysical and metabolic diversity in Circulating human cord blood reticulocytes. PLoS One. 8 (10), e76062. https://doi.org/10.1371/journal.pone.0076062 (2013).
-
Hu, J. et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for Understanding of normal and disordered erythropoiesis in vivo. Blood 121 (16), 3246–3253. https://doi.org/10.1182/blood-2013-01-476390 (2013).
-
Gautier, E. F. et al. Absolute proteome quantification of highly purified populations of Circulating reticulocytes and mature erythrocytes. Published Online. https://doi.org/10.1182/bloodadvances.2018023515 (2018).
-
Anderson, M. E. & Meister, A. Transport and direct utilization of gamma-glutamylcyst(e)ine for glutathione synthesis. Proc. Natl. Acad. Sci. U S A. 80 (3), 707. https://doi.org/10.1073/PNAS.80.3.707 (1983).
-
Maiorino, F. M. et al. Diversity of glutathione peroxidases. Methods Enzymol. 252 (C), 38–48. https://doi.org/10.1016/0076-6879(95)52007-4 (1995).
-
Stevens-Hernandez, C. J., Flatt, J. F., Kupzig, S. & Bruce, L. J. Reticulocyte maturation and variant red blood cells. Front. Physiol. 13 https://doi.org/10.3389/FPHYS.2022.834463/FULL (2022).
-
Kalfa, T. A. Diagnosis and clinical management of red cell membrane disorders. Hematology 2021 (1), 331–340. https://doi.org/10.1182/HEMATOLOGY.2021000265 (2021).
-
Domingues, C. C. et al. Effect of cholesterol depletion and temperature on the isolation of detergent-resistant membranes from human erythrocytes. J. Membr. Biol. 234 (3), 195–205. https://doi.org/10.1007/S00232-010-9246-5/FIGURES/4 (2010).
-
Sagawa, S., Shirakii, K., CHANGES OF OSMOTIC FRAGILITY OF RED BLOOD CELLS & DUE TO REPLETION OR DEPLETION OF CHOLESTEROL IN HUMAN AND RAT RED CELLS IN VITRO. J. Nutr. Sci. Vitaminol ;26:161–169. (1980).
-
Nagasawa, T. Deformability and osmotic fragility of phenylhydrazine-injected rat erythrocytes fractionated by Percoll density-gradients. Jpn J. Physiol. 32 (2), 161–170. https://doi.org/10.2170/JJPHYSIOL.32.161 (1982).
-
Vasileva, V. & Chubinskiy-Nadezhdin, V. Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. J. Cell. Physiol. 238 (5), 918–930. https://doi.org/10.1002/JCP.31001 (2023).
-
Geoghegan, N. D. et al. 4D analysis of malaria parasite invasion offers insights into erythrocyte membrane remodeling and parasitophorous vacuole formation. Nat. Commun. 2021. 12 (1), 1. https://doi.org/10.1038/s41467-021-23626-7 (2021).
-
Lu, Z. et al. Fine-Tuning of cholesterol homeostasis controls erythroid differentiation. Published online 2021. https://doi.org/10.1002/advs.202102669.
-
Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. https://doi.org/10.1038/s41580-019-0190-7.
-
Duan, Y. et al. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal. Transduct. Target. Therapy 2022. 7 (1), 1. https://doi.org/10.1038/s41392-022-01125-5 (2022).
-
Du, Q. et al. FASN promotes lymph node metastasis in cervical cancer via cholesterol reprogramming and lymphangiogenesis. Cell. Death Disease 2022. 13 (5), 5. https://doi.org/10.1038/s41419-022-04926-2 (2022).
-
Jin, Y. et al. SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer. FEBS Open. Bio. 11 (5), 1343–1352. https://doi.org/10.1002/2211-5463.13137 (2021).
-
Carroll, R. G. et al. An unexpected link between fatty acid synthase and cholesterol synthesis in Proinflammatory macrophage activation. J. Biol. Chem. 293 (15), 5509–5521. https://doi.org/10.1074/jbc.RA118.001921 (2018).
-
Geng, F. et al. SREBP-1 upregulates lipophagy to maintain cholesterol homeostasis in brain tumor cells. Cell. Rep. 42 (7), 112790. https://doi.org/10.1016/J.CELREP.2023.112790/ATTACHMENT/7DD0985A-F539-4841-8AC1-2B1E08EA0EEF/MMC9.PDF (2023).
-
Brown, A. J., Coates, H. W. & Sharpe, L. J. Cholesterol synthesis. Biochemistry of Lipids, lipoproteins and membranes. Published Online January. 1, 317–355. https://doi.org/10.1016/B978-0-12-824048-9.00005-5 (2021).
-
Koter, M., Franiak, I., Strychalska, K., Broncel, M. & Chojnowska-Jezierska, J. Damage to the structure of erythrocyte plasma membranes in patients with type-2 hypercholesterolemia. Int. J. Biochem. Cell. Biol. 36 (2), 205–215. https://doi.org/10.1016/S1357-2725(03)00195-X (2004).
-
Buyan, A., Allender, D. W., Corry, B. & Schick, M. Lipid redistribution in the highly curved footprint of Piezo1. Biophys. J. 122 (11), 1900–1913. https://doi.org/10.1016/j.bpj.2022.07.022 (2023).
-
Beverley, K. M. & Levitan, I. Cholesterol regulation of mechanosensitive ion channels. Front. Cell. Dev. Biol. 12, 1352259. https://doi.org/10.3389/FCELL.2024.1352259/BIBTEX (2024).
-
Botello-Smith, W. M. et al. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat. Commun. 10(1), 1–10. https://doi.org/10.1038/s41467-019-12501-1 (2019).
-
Ridone, P. et al. Disruption of membrane cholesterol organization impairs the activity of PIEZO1 channel clusters. J. Gen. Physiol. 152 (8). https://doi.org/10.1085/JGP.201912515/VIDEO-4 (2020).
-
Samuel, B. U. et al. The role of cholesterol and Glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem. 276 (31), 29319–29329. https://doi.org/10.1074/jbc.M101268200 (2001).
-
Maxfield, F. R. & Wüstner, D. Analysis of cholesterol trafficking with fluorescent probes. Methods Cell. Biol. 108, 367. https://doi.org/10.1016/B978-0-12-386487-1.00017-1 (2012).
-
Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193(4254), 673–675. https://doi.org/10.1126/SCIENCE.781840 (1976).
-
King, N. R. et al. Basigin mediation of Plasmodium falciparum red blood cell invasion does not require its transmembrane domain or interaction with monocarboxylate transporter 1. PLoS Pathog. 20(2), e1011989. https://doi.org/10.1371/JOURNAL.PPAT.1011989 (2024).
-
Nemkov, T., Reisz, J. A., Gehrke, S., Hansen, K. C. & D’Alessandro, A. High-throughput metabolomics: isocratic and gradient mass spectrometry-based methods. Methods Mol. Biol. 1978, 13–26. https://doi.org/10.1007/978-1-4939-9236-2_2/TABLES/1 (2019).
-
Nemkov, T., Hansen, K. C. & D’Alessandro, A. A three-minute method for high-throughput quantitative metabolomics and quantitative tracing experiments of central carbon and nitrogen pathways. Rapid Commun. Mass Spectrom. 31 (8), 663–673. https://doi.org/10.1002/RCM.7834 (2017).
-
Reisz, J. A., Zheng, C., D’Alessandro, A. & Nemkov, T. Untargeted and semi-targeted lipid analysis of biological samples using mass spectrometry-based metabolomics. Methods Mol. Biol. 1978, 121–135. https://doi.org/10.1007/978-1-4939-9236-2_8/FIGURES/1 (2019).
-
Thomas, T. et al. Evidence for structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. J. Proteome Res. 19 (11), 4455. https://doi.org/10.1021/ACS.JPROTEOME.0C00606 (2020).
