Choice of lipid supplementation for in vitro erythroid cell culture impacts reticulocyte yield and characteristics

choice-of-lipid-supplementation-for-in-vitro-erythroid-cell-culture-impacts-reticulocyte-yield-and-characteristics
Choice of lipid supplementation for in vitro erythroid cell culture impacts reticulocyte yield and characteristics

References

  1. Moreau, A. et al. Physical mechanisms of red blood cell Splenic filtration. Proc. Natl. Acad. Sci. U S A. 120 (44), e2300095120. https://doi.org/10.1073/PNAS.2300095120/SUPPL_FILE/PNAS.2300095120.SM06.AVI (2023).

    Google Scholar 

  2. Minetti, G., Dorn, I., Köfeler, H., Perotti, C. & Kaestner, L. Insights from lipidomics into the terminal maturation of Circulating human reticulocytes. Cell. Death Discovery 2025. 11 (1), 1. https://doi.org/10.1038/s41420-025-02318-x (2025).

    Google Scholar 

  3. Mohandas, N. & Evans, E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23 (23, 1994), 787–818. https://doi.org/10.1146/ANNUREV.BB.23.060194.004035/CITE/REFWORKS (1994).

    Google Scholar 

  4. RA C. Abnormalities of cell-membrane fluidity in the pathogenesis of disease. N. Engl. J. Med. 297, 371–377 (2024). https://cir.nii.ac.jp/crid/1570572700582030592.

  5. Buchwald, H., O’Dea, T. J., Menchaca, H. J., Michalek, V. N. & Rohde, T. D. Effect of plasma cholesterol on red blood cell oxygen transport. Clin. Exp. Pharmacol. Physiol. 27 (12), 951–955. https://doi.org/10.1046/J.1440-1681.2000.03383.X (2000).

    Google Scholar 

  6. Forsyth, A. M., Braunmüller, S., Wan, J., Franke, T. & Stone, H. A. The effects of membrane cholesterol and Simvastatin on red blood cell deformability and ATP release. Microvasc Res. 83 (3), 347–351. https://doi.org/10.1016/J.MVR.2012.02.004 (2012).

    Google Scholar 

  7. Doole, F. T., Kumarage, T., Ashkar, R. & Brown, M. F. Cholesterol stiffening of lipid membranes. J. Membrane Biology 2022. 255 (4), 4. https://doi.org/10.1007/S00232-022-00263-9 (2022).

    Google Scholar 

  8. Nemkov, T. et al. Circulating primitive murine erythroblasts undergo complex proteomic and metabolomic changes during terminal maturation. Blood Adv. 6 (10), 3072–3089. https://doi.org/10.1182/BLOODADVANCES.2021005975 (2022).

    Google Scholar 

  9. Moon, S. H. et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176 (3), 564. https://doi.org/10.1016/J.CELL.2018.11.011 (2018).

    Google Scholar 

  10. D’Alessandro, A. et al. Ferroptosis regulates hemolysis in stored murine and human red blood cells. Blood 145 (7), 765–783. https://doi.org/10.1182/BLOOD.2024026109 (2025).

    Google Scholar 

  11. Mahdi, A. et al. The red blood cell as a mediator of endothelial dysfunction in patients with Familial hypercholesterolemia and dyslipidemia. J. Intern. Med. 293 (2), 228. https://doi.org/10.1111/JOIM.13580 (2022).

    Google Scholar 

  12. Himbert, S. et al. Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity. PLoS One. 16 (11), e0259267. https://doi.org/10.1371/JOURNAL.PONE.0259267 (2021).

    Google Scholar 

  13. Peltier, S. et al. Proteostasis and metabolic dysfunction characterize a subset of storage-induced senescent erythrocytes targeted for post-transfusion clearance. J. Clin. Invest. 11 https://doi.org/10.1172/JCI183099 (2025).

  14. Hawksworth, J. et al. Enhancement of red blood cell transfusion compatibility using CRISPR-mediated erythroblast gene editing. EMBO Mol. Med. 10 (6), e8454. https://doi.org/10.15252/emmm.201708454 (2018).

    Google Scholar 

  15. Giarratana, M. C. et al. Proof of principle for transfusion of in vitro-generated red blood cells. Blood 118 (19), 5071–5079. https://doi.org/10.1182/BLOOD-2011-06-362038 (2011).

    Google Scholar 

  16. Wilson, M. C. et al. Comparison of the proteome of adult and cord erythroid cells, and changes in the proteome following reticulocyte maturation. Mol. Cell. Proteomics. 15 (6), 1938–1946. https://doi.org/10.1074/mcp.M115.057315 (2016).

    Google Scholar 

  17. Moura, P. L. et al. Non-muscle myosin II drives vesicle loss during human reticulocyte maturation. Haematologica 103 (12), 1997–2007. https://doi.org/10.3324/HAEMATOL.2018.199083 (2018).

    Google Scholar 

  18. Bernecker, C. et al. Biomechanical properties of native and cultured red blood cells–Interplay of shape, structure and biomechanics. Front. Physiol. 13, 979298. https://doi.org/10.3389/FPHYS.2022.979298/FULL (2022).

    Google Scholar 

  19. Claessen, M. J. A. G. et al. Production and stability of cultured red blood cells depends on the concentration of cholesterol in culture medium. Sci. Rep. 2024. 14 (1), 1. https://doi.org/10.1038/s41598-024-66440-z (2024).

    Google Scholar 

  20. Satchwell, T. J. et al. Genetic manipulation of cell line derived reticulocytes enables dissection of host malaria invasion requirements. Nat. Commun. 10 (1). https://doi.org/10.1038/S41467-019-11790-W (2019).

  21. Martins Freire, C. et al. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. Blood Adv. 8 (19), 5166–5178. https://doi.org/10.1182/BLOODADVANCES.2024012743/2232404/BLOODADVANCES.2024012743.PDF (2024).

    Google Scholar 

  22. Moura, P. L. et al. PIEZO1 gain-of-function mutations delay reticulocyte maturation in hereditary xerocytosis. Haematologica 105 (6), e268. https://doi.org/10.3324/HAEMATOL.2019.231159 (2020).

    Google Scholar 

  23. Bernecker, C. et al. Cholesterol deficiency causes impaired osmotic stability of cultured red blood cells. Front. Physiol. 10, 1529. https://doi.org/10.3389/fphys.2019.01529 (2019).

    Google Scholar 

  24. Zingariello, M. et al. Dexamethasone predisposes human erythroblasts toward impaired lipid metabolism and renders their ex vivo expansion highly dependent on plasma lipoproteins. Front. Physiol. 10 (APR), 281. https://doi.org/10.3389/fphys.2019.00281 (2019).

    Google Scholar 

  25. Griffiths, R. E. et al. Maturing reticulocytes internalize plasma membrane in Glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis. https://doi.org/10.1182/blood-2011-09-376475.

  26. Kupzig, S., Parsons, S. F., Curnow, E., Anstee, D. J. & Blair, A. Superior survival of ex vivo cultured human reticulocytes following transfusion into mice. Haematologica 102 (3), 476–483. https://doi.org/10.3324/haematol.2016.154443 (2017).

    Google Scholar 

  27. Bruil, A., Beugeling, T., Feijen, J. & van Aken, W. G. The mechanisms of leukocyte removal by filtration. Transfus. Med. Rev. 9 (2), 145–166. https://doi.org/10.1016/S0887-7963(05)80053-7 (1995).

    Google Scholar 

  28. Malleret, B. et al. Significant Biochemical, biophysical and metabolic diversity in Circulating human cord blood reticulocytes. PLoS One. 8 (10), e76062. https://doi.org/10.1371/journal.pone.0076062 (2013).

    Google Scholar 

  29. Hu, J. et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for Understanding of normal and disordered erythropoiesis in vivo. Blood 121 (16), 3246–3253. https://doi.org/10.1182/blood-2013-01-476390 (2013).

    Google Scholar 

  30. Gautier, E. F. et al. Absolute proteome quantification of highly purified populations of Circulating reticulocytes and mature erythrocytes. Published Online. https://doi.org/10.1182/bloodadvances.2018023515 (2018).

    Google Scholar 

  31. Anderson, M. E. & Meister, A. Transport and direct utilization of gamma-glutamylcyst(e)ine for glutathione synthesis. Proc. Natl. Acad. Sci. U S A. 80 (3), 707. https://doi.org/10.1073/PNAS.80.3.707 (1983).

    Google Scholar 

  32. Maiorino, F. M. et al. Diversity of glutathione peroxidases. Methods Enzymol. 252 (C), 38–48. https://doi.org/10.1016/0076-6879(95)52007-4 (1995).

    Google Scholar 

  33. Stevens-Hernandez, C. J., Flatt, J. F., Kupzig, S. & Bruce, L. J. Reticulocyte maturation and variant red blood cells. Front. Physiol. 13 https://doi.org/10.3389/FPHYS.2022.834463/FULL (2022).

  34. Kalfa, T. A. Diagnosis and clinical management of red cell membrane disorders. Hematology 2021 (1), 331–340. https://doi.org/10.1182/HEMATOLOGY.2021000265 (2021).

    Google Scholar 

  35. Domingues, C. C. et al. Effect of cholesterol depletion and temperature on the isolation of detergent-resistant membranes from human erythrocytes. J. Membr. Biol. 234 (3), 195–205. https://doi.org/10.1007/S00232-010-9246-5/FIGURES/4 (2010).

    Google Scholar 

  36. Sagawa, S., Shirakii, K., CHANGES OF OSMOTIC FRAGILITY OF RED BLOOD CELLS & DUE TO REPLETION OR DEPLETION OF CHOLESTEROL IN HUMAN AND RAT RED CELLS IN VITRO. J. Nutr. Sci. Vitaminol ;26:161–169. (1980).

    Google Scholar 

  37. Nagasawa, T. Deformability and osmotic fragility of phenylhydrazine-injected rat erythrocytes fractionated by Percoll density-gradients. Jpn J. Physiol. 32 (2), 161–170. https://doi.org/10.2170/JJPHYSIOL.32.161 (1982).

    Google Scholar 

  38. Vasileva, V. & Chubinskiy-Nadezhdin, V. Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. J. Cell. Physiol. 238 (5), 918–930. https://doi.org/10.1002/JCP.31001 (2023).

    Google Scholar 

  39. Geoghegan, N. D. et al. 4D analysis of malaria parasite invasion offers insights into erythrocyte membrane remodeling and parasitophorous vacuole formation. Nat. Commun. 2021. 12 (1), 1. https://doi.org/10.1038/s41467-021-23626-7 (2021).

    Google Scholar 

  40. Lu, Z. et al. Fine-Tuning of cholesterol homeostasis controls erythroid differentiation. Published online 2021. https://doi.org/10.1002/advs.202102669.

  41. Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. https://doi.org/10.1038/s41580-019-0190-7.

  42. Duan, Y. et al. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal. Transduct. Target. Therapy 2022. 7 (1), 1. https://doi.org/10.1038/s41392-022-01125-5 (2022).

    Google Scholar 

  43. Du, Q. et al. FASN promotes lymph node metastasis in cervical cancer via cholesterol reprogramming and lymphangiogenesis. Cell. Death Disease 2022. 13 (5), 5. https://doi.org/10.1038/s41419-022-04926-2 (2022).

    Google Scholar 

  44. Jin, Y. et al. SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer. FEBS Open. Bio. 11 (5), 1343–1352. https://doi.org/10.1002/2211-5463.13137 (2021).

    Google Scholar 

  45. Carroll, R. G. et al. An unexpected link between fatty acid synthase and cholesterol synthesis in Proinflammatory macrophage activation. J. Biol. Chem. 293 (15), 5509–5521. https://doi.org/10.1074/jbc.RA118.001921 (2018).

    Google Scholar 

  46. Geng, F. et al. SREBP-1 upregulates lipophagy to maintain cholesterol homeostasis in brain tumor cells. Cell. Rep. 42 (7), 112790. https://doi.org/10.1016/J.CELREP.2023.112790/ATTACHMENT/7DD0985A-F539-4841-8AC1-2B1E08EA0EEF/MMC9.PDF (2023).

    Google Scholar 

  47. Brown, A. J., Coates, H. W. & Sharpe, L. J. Cholesterol synthesis. Biochemistry of Lipids, lipoproteins and membranes. Published Online January. 1, 317–355. https://doi.org/10.1016/B978-0-12-824048-9.00005-5 (2021).

    Google Scholar 

  48. Koter, M., Franiak, I., Strychalska, K., Broncel, M. & Chojnowska-Jezierska, J. Damage to the structure of erythrocyte plasma membranes in patients with type-2 hypercholesterolemia. Int. J. Biochem. Cell. Biol. 36 (2), 205–215. https://doi.org/10.1016/S1357-2725(03)00195-X (2004).

    Google Scholar 

  49. Buyan, A., Allender, D. W., Corry, B. & Schick, M. Lipid redistribution in the highly curved footprint of Piezo1. Biophys. J. 122 (11), 1900–1913. https://doi.org/10.1016/j.bpj.2022.07.022 (2023).

    Google Scholar 

  50. Beverley, K. M. & Levitan, I. Cholesterol regulation of mechanosensitive ion channels. Front. Cell. Dev. Biol. 12, 1352259. https://doi.org/10.3389/FCELL.2024.1352259/BIBTEX (2024).

    Google Scholar 

  51. Botello-Smith, W. M. et al. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat. Commun. 10(1), 1–10. https://doi.org/10.1038/s41467-019-12501-1 (2019).

  52. Ridone, P. et al. Disruption of membrane cholesterol organization impairs the activity of PIEZO1 channel clusters. J. Gen. Physiol. 152 (8). https://doi.org/10.1085/JGP.201912515/VIDEO-4 (2020).

  53. Samuel, B. U. et al. The role of cholesterol and Glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem. 276 (31), 29319–29329. https://doi.org/10.1074/jbc.M101268200 (2001).

    Google Scholar 

  54. Maxfield, F. R. & Wüstner, D. Analysis of cholesterol trafficking with fluorescent probes. Methods Cell. Biol. 108, 367. https://doi.org/10.1016/B978-0-12-386487-1.00017-1 (2012).

    Google Scholar 

  55. Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193(4254), 673–675. https://doi.org/10.1126/SCIENCE.781840 (1976).

  56. King, N. R. et al. Basigin mediation of Plasmodium falciparum red blood cell invasion does not require its transmembrane domain or interaction with monocarboxylate transporter 1. PLoS Pathog. 20(2), e1011989. https://doi.org/10.1371/JOURNAL.PPAT.1011989 (2024).

  57. Nemkov, T., Reisz, J. A., Gehrke, S., Hansen, K. C. & D’Alessandro, A. High-throughput metabolomics: isocratic and gradient mass spectrometry-based methods. Methods Mol. Biol. 1978, 13–26. https://doi.org/10.1007/978-1-4939-9236-2_2/TABLES/1 (2019).

    Google Scholar 

  58. Nemkov, T., Hansen, K. C. & D’Alessandro, A. A three-minute method for high-throughput quantitative metabolomics and quantitative tracing experiments of central carbon and nitrogen pathways. Rapid Commun. Mass Spectrom. 31 (8), 663–673. https://doi.org/10.1002/RCM.7834 (2017).

    Google Scholar 

  59. Reisz, J. A., Zheng, C., D’Alessandro, A. & Nemkov, T. Untargeted and semi-targeted lipid analysis of biological samples using mass spectrometry-based metabolomics. Methods Mol. Biol. 1978, 121–135. https://doi.org/10.1007/978-1-4939-9236-2_8/FIGURES/1 (2019).

    Google Scholar 

  60. Thomas, T. et al. Evidence for structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. J. Proteome Res. 19 (11), 4455. https://doi.org/10.1021/ACS.JPROTEOME.0C00606 (2020).

    Google Scholar 

Download references