Chromosome-level genome assembly for an edible protein microalgae Auxenochlorella pyrenoidosa

chromosome-level-genome-assembly-for-an-edible-protein-microalgae-auxenochlorella-pyrenoidosa
Chromosome-level genome assembly for an edible protein microalgae Auxenochlorella pyrenoidosa

Code availability

All software and pipelines utilized in this study adhered rigorously to the manuals and protocols of the established bioinformatic tools. The specific versions of the software are detailed in the Methods section. If parameters were not specified, default settings were used. No custom code was used in this study.

Data availability

References

  1. United Nations Department of Economic and Social Affairs. Population Division (Ed.). World Population 9, 1–54 (2022).

    Google Scholar 

  2. Williamson, E., Ross, I. L., Wall, B. T. & Hankamer, B. Microalgae: Potential novel protein for sustainable human nutrition. Trends Plant Sci. 29, 370–382 (2024).

    Google Scholar 

  3. Torres-Tiji, Y., Fields, F. J. & Mayfield, S. P. Microalgae as a future food source. Biotechnol Adv. 41, 107536 (2020).

    Google Scholar 

  4. Becker, E. W. Micro-algae as a source of protein. Biotechnol Adv. 25, 207–210 (2007).

    Google Scholar 

  5. Krienitz, L., Huss, V. A. & Bock, C. Chlorella: 125 years of the green survivalist. Trends Plant Sci. 20, 67–69 (2015).

    Google Scholar 

  6. Barbosa, M. J., Janssen, M., Sudfeld, C., D’Adamo, S. & Wijffels, R. H. Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol. 41, 452–471 (2023).

    Google Scholar 

  7. Fan, J. et al. Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp. Plant Physiol. 169, 2444–2461 (2015).

    Google Scholar 

  8. Zou, S. et al. Combining and comparing coalescent, distance and character-based approaches for barcoding microalgaes: A test with Chlorella-like species (Chlorophyta). PLoS One 11, e0153833 (2016).

    Google Scholar 

  9. Zhu, T. et al. Transcriptomic and metabolomic analysis reveal the effects of light quality on the growth and lipid biosynthesis in Chlorella pyrenoidosa. Biomolecules. 14, 1144 (2024).

    Google Scholar 

  10. Chen, L., Zhang, L. & Liu, T. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum. Bioresource Technol. 214, 567–573 (2016).

    Google Scholar 

  11. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 18, 170–175 (2021).

    Google Scholar 

  12. Do, V. H. et al. Pasa: leveraging population pangenome graph to scaffold prokaryote genome assemblies. Nucleic Acids Res. 52, e15 (2024).

    Google Scholar 

  13. Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Current protocols in bioinformatics Chapter 4, Unit 4.10 (2004).

    Google Scholar 

  14. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Google Scholar 

  15. Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).

    Google Scholar 

  16. Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 49, D192–D200 (2021).

    Google Scholar 

  17. Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Google Scholar 

  18. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  19. Saier, M. H. et al. The Transporter Classification Database (TCDB): 2021 update. Nucleic Acids Res. 49, D461–D467 (2021).

    Google Scholar 

  20. Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–70 (2003).

    Google Scholar 

  21. Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).

    Google Scholar 

  22. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP613830 (2025).

  23. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP637498 (2025).

  24. Zhang, S. et al. The GSA Family in 2025: A broadened sharing platform for multi-omics and multimodal data. Genom Proteom Bioinf. 23, qzaf072 (2025).

    Google Scholar 

  25. CNCB-NGDC Members and Partners. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2025. Nucleic Acids Res. 53, D30–D44 (2025).

    Google Scholar 

  26. CNCB Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA033078 (2025).

  27. Luo, X. M. GenBank https://identifiers.org/ncbi/insdc.gca:GCA_047663505.1 (2025).

  28. Luo, X. M. Auxenochlorella pyrenoidosa genome annotation and protein sequences. figshare https://doi.org/10.6084/m9.figshare.28498355 (2025).

Download references

Acknowledgements

This work was supported by the National Key R and D Program of China (2025YFE0199700, 2023YFE0199400), Agricultural Science and Technology Innovation Program (ASTIP) (No. Y2024QC33), Chengdu Science and Technology Program (No. 2024-YF06-00116-HZ, 2024-YF06-00124-HZ), the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (No. 34-IUA-02).

Author information

Authors and Affiliations

  1. Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu, 610000, China

    Xiumei Luo, Ge Guan & Maozhi Ren

  2. School of Agricultural Science of Zhengzhou University, Zhengzhou, Henan, 450000, China

    Haotian Su, Ge Guan & Maozhi Ren

Authors

  1. Xiumei Luo
  2. Haotian Su
  3. Ge Guan
  4. Maozhi Ren

Contributions

X.L.: Funding acquisition, Conceptualization, Methodology/Study design, Resources, Investigation, Formal analysis, Writing-original draft. H.S.: Formal analysis, Data curation, Investigation, Writing-original draft. G.G.: Formal analysis, Data curation, Investigation, Writing-original draft. M.R.: Funding acquisition, Data curation, Conceptualization, Supervision, Writing-review and editing.

Corresponding authors

Correspondence to Xiumei Luo or Maozhi Ren.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Su, H., Guan, G. et al. Chromosome-level genome assembly for an edible protein microalgae Auxenochlorella pyrenoidosa. Sci Data (2025). https://doi.org/10.1038/s41597-025-06358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41597-025-06358-x