Chromosome-level genome assembly of Monochamus sutor in China

chromosome-level-genome-assembly-of-monochamus-sutor-in-china
Chromosome-level genome assembly of Monochamus sutor in China

References

  1. Yulin, H. Present Situation and Control Measures of Pine Wood Nematode. World Journal of Forestry 11, 193–199 (2022).

    Google Scholar 

  2. Ding, Y. et al. Research Status and Hotspot Analysis of Pine Wood Nematode Disease Based on CiteSpace. Natural Protected Areas 2, 115–128, https://doi.org/10.12335/2096-8981.2021112901 (2022).

    Google Scholar 

  3. Jianjun, Z., Runzhi, Z. & Jingyuan, C. Species and their dispersal ability of Monochamus as vectors to transmit Bursaphelenchus xylophilus. Journal of Zhejiang Forestry College 3, 350–356 (2007).

    Google Scholar 

  4. KOBAYASF, YAMANEA, IKEDAT. The Japanese pine sawyer beetle as the vector of pinewilt disease. J. Ann Rev Entomol 29, 115–135 (1984).

    Google Scholar 

  5. LINITMJ, KONDOE, SMITHMT. Insects associated with the pine wood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae), in Missouri. J. Environ Entomol 12, 457–470 (1983).

    Google Scholar 

  6. USDA Forest Service 1991. Pest Risk Assessment of the Importation of Larch from Siberia and the Soviet Far East. USDA Forest Service, Miscellaneous Publication No. 1495, September 1991.

  7. Bakke, Alf& Torstein Kvamme. The pine sawyer (Monochamus sutor): distribution and life history in South Norway https://api.semanticscholar.org/CorpusID: 133813053 (1992).

  8. Zhang, Q.-H., Byers, D. J. A. & Zhang, X.-D. Influence of bark thickness, trunk diameter and height on reproduction of the longhorned beetle, Monochamus sutor (Col., Cerambycidae) in burned larch and pine. Journal of Applied Entomology 115, 145–154 (1993).

    Google Scholar 

  9. Schroeder, L. M., Weslien, J., Lindelöw, Å. & Lindhe, A. Attacks by bark- and wood-boring Coleoptera on mechanically created high stumps of Norway spruce in the two years following cutting. Forest Ecology and Management 123, 21–30 (1999).

    Google Scholar 

  10. Cesari, M., Marescalchi, O., Francardi, V. & Mantovani, B. Taxonomy and phylogeny of European Monochamus species: first molecular and karyological data. Journal of Zoological Systematics and Evolutionary Research 43, 1–7 (2005).

    Google Scholar 

  11. SChroeder, L. & Magnusson, C. Transmission of Bursaphelenchus mucronatus (Nematoda) to branches and bolts of Pinus sylvestris and Picea abies by the cerambycid beetle Monochamus sutor. Scandinavian Journal of Forest Research 7, 107–112 (1992).

    Google Scholar 

  12. Akbulut, S., Yuksel, B., Serin, M., Baysal, I. & Erdem, M. Pathogenicity of Bursaphelenchus mucronatus in pine seedlings under greenhouse conditions. Turkish Journal of Agriculture Forestry 31, 169–173 (2007).

    Google Scholar 

  13. Pajares, J. A. et al. 2-(Undecyloxy)-ethanol is a major component of the male-produced aggregation pheromone of Monochamus sutor. Entomol Exp Appl 149, 118–127 (2013).

    Google Scholar 

  14. Andreasson, A., Kiss, N. B., Juhlin, C. C. & Höög, A. Long-term storage of endocrine tissues at − 80 °C does not adversely affect RNA quality or overall histomorphology. Biopreserv Biobank. 11, 366–70 (2013).

    Google Scholar 

  15. Zerpa-Catanho, D., Zhang, X., Song, J., Hernandez, A. G. & Ming, R. Ultra-long DNA molecule isolation from plant nuclei for ultra-long read genome sequencing. STAR Protoc 2, 100343 (2021).

    Google Scholar 

  16. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 39, 1348–1365 (2021).

    Google Scholar 

  17. MacKenzie, M. & Argyropoulos, C. An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations. Micromachines (Basel) 14, 459 (2023).

    Google Scholar 

  18. Hu, J. et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome Biol 25, 107 (2024).

    Google Scholar 

  19. Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 36, 2896–2898 (2020).

    Google Scholar 

  20. Hu, J., Fan, J. P., Sun, Z. Y. & Liu, S. L. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).

    Google Scholar 

  21. Chen, S. F., Zhou, Y. Q., Chen, Y. R. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Google Scholar 

  22. De Sena, B. G. & Smith, A. D. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Research 8, 1874 (2021).

    Google Scholar 

  23. Zhou, C. X., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).

    Google Scholar 

  24. Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst 3, 99–101 (2016).

    Google Scholar 

  25. Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing Genome Assembly and Annotation Completeness. Methods Mol Biol. 1962, 227–245 (2019).

    Google Scholar 

  26. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology and Evolution 38, 4647–4654 (2021).

    Google Scholar 

  27. Gao, Y. F. et al. Chromosome-level genome assembly of the Japanese sawyer beetle Monochamus alternatus. Sci Data 11, 199 (2024).

    Google Scholar 

  28. Hu, K. et al. HiTE: a fast and accurate dynamic boundary adjustment approach for full-length transposable element detection and annotation. Nat Commun 15, 5573 (2024).

    Google Scholar 

  29. Tarailo-Graovac, M. & Chen, N. S. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 5, 4.10.11–14.10.14 (2009).

    Google Scholar 

  30. Bruna, T., Lomsadze, A. & Borodovsky, M. A. new gene finding tool GeneMark-ETP significantly improves the accuracy of automatic annotation of large eukaryotic genomes. Genome Res. 34, 757–768 (2024).

    Google Scholar 

  31. Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 4, 769–777 (2024).

    Google Scholar 

  32. Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    Google Scholar 

  33. Chen, C. et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant 13, 1194–1202 (2020).

    Google Scholar 

  34. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR34440010 (2025).

  35. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR34440008 (2025).

  36. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR34440009 (2025).

  37. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR34335299 (2025).

  38. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR34335300 (2025).

  39. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR34335301 (2025).

  40. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP597287 (2025).

  41. Yu, D. Chromosome-level genome assembly of potential vectors for pine wood nematode Monochamus sutor. figshare. Collection https://doi.org/10.6084/m9.figshare.c.7921310 (2025).

    Google Scholar 

  42. Yu, D., Tao, J. & Cao, L. J. Monochamus sutor Genome sequencing and assembly. Genbank https://identifiers.org/insdc.gca:GCA_052757275.1 (2025).

Download references