CiFi: accurate long-read chromosome conformation capture with low-input requirements

cifi:-accurate-long-read-chromosome-conformation-capture-with-low-input-requirements
CiFi: accurate long-read chromosome conformation capture with low-input requirements

References

  1. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Google Scholar 

  2. Lopes Novo, C. & Rugg-Gunn, P. J. Chromatin organization in pluripotent cells: emerging approaches to study and disrupt function. Brief. Funct. Genom. 15, 305–314 (2016).

    Google Scholar 

  3. Spitz, F. & Furlong, E. E. M. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

    Google Scholar 

  4. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Google Scholar 

  5. Selvaraj, S., R Dixon, J., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31, 1111–1118 (2013).

    Google Scholar 

  6. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    Google Scholar 

  7. Tavares-Cadete, F., Norouzi, D., Dekker, B., Liu, Y. & Dekker, J. Multi-contact 3C reveals that the human genome during interphase is largely not entangled. Nat. Struct. Mol. Biol. 27, 1105–1114 (2020).

    Google Scholar 

  8. Deshpande, A. S. et al. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat. Biotechnol. 40, 1488–1499 (2022).

    Google Scholar 

  9. Zhong, J.-Y. et al. High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding. Nat. Commun. 14, 1250 (2023).

    Google Scholar 

  10. Hildebrand, E. M. et al. Mitotic chromosomes are self-entangled and disentangle through a topoisomerase-II-dependent two-stage exit from mitosis. Mol. Cell 84, 1422–1441.e14 (2024).

    Google Scholar 

  11. Bein, B. et al. Long-read sequencing and genome assembly of natural history collection samples and challenging specimens. Genome Biol. 26, 25 (2025).

    Google Scholar 

  12. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Google Scholar 

  13. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Google Scholar 

  14. Kronenberg, Z. et al. The Platinum Pedigree: a long-read benchmark for genetic variants. Nat. Methods 22, 1669–1676 (2025).

    Google Scholar 

  15. Porubsky, D. et al. Human de novo mutation rates from a four-generation pedigree reference. Nature 643, 427–436 (2025).

    Google Scholar 

  16. Martin, M., Ebert, P. & Marschall, T. Read-based phasing and analysis of phased variants with WhatsHap. Methods Mol. Biol. 2590, 127–138 (2023).

    Google Scholar 

  17. Shin, H. et al. TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res. 44, e70 (2016).

    Google Scholar 

  18. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Google Scholar 

  19. Zufferey, M., Tavernari, D., Oricchio, E. & Ciriello, G. Comparison of computational methods for the identification of topologically associating domains. Genome Biol. 19, 217 (2018).

    Google Scholar 

  20. Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Google Scholar 

  21. Mefford, H. C. et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N. Engl. J. Med. 359, 1685–1699 (2008).

    Google Scholar 

  22. Klopocki, E. et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am. J. Hum. Genet 80, 232–240 (2007).

    Google Scholar 

  23. Szalay, M.-F., Majchrzycka, B., Jerković, I., Cavalli, G. & Ibrahim, D. M. Evolution and function of chromatin domains across the tree of life. Nat. Struct. Mol. Biol. 31, 1824–1837 (2024).

    Google Scholar 

  24. Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    Google Scholar 

  25. Kingan, S. B. et al. A high-quality genome assembly from a single mosquito using PacBio sequencing. Genes 10, 62 (2019).

    Google Scholar 

  26. Lukyanchikova, V. et al. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat. Commun. 13, 1960 (2022).

    Google Scholar 

  27. Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat. Methods 21, 967–970 (2024).

    Google Scholar 

  28. Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).

    Google Scholar 

  29. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Google Scholar 

  30. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Google Scholar 

  31. Franz, G. Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In Sterile Insect Technique 427–451 (Springer-Verlag, 2006).

  32. Papanicolaou, A. et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 17, 192 (2016).

    Google Scholar 

  33. Ramani, V. et al. Mapping 3D genome architecture through in situ DNase Hi-C. Nat. Protoc. 11, 2104–2121 (2016).

    Google Scholar 

  34. Hamley, J. C., Li, H., Denny, N., Downes, D. & Davies, J. O. J. Determining chromatin architecture with micro Capture-C. Nat. Protoc. 18, 1687–1711 (2023).

    Google Scholar 

  35. Li, H. & Durbin, R. Genome assembly in the telomere-to-telomere era. Nat. Rev. Genet 25, 658–670 (2024).

    Google Scholar 

  36. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Google Scholar 

  37. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Google Scholar 

  38. Open2C et al. Pairtools: from sequencing data to chromosome contacts. PLoS Comput Biol. 20, e1012164 (2024).

    Google Scholar 

  39. Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    Google Scholar 

  40. Baril, T., Galbraith, J. & Hayward, A. Earl Grey: a fully automated user-friendly transposable element annotation and analysis pipeline. Mol. Biol. Evol. 41, msae068 (2024).

    Google Scholar 

  41. Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps. Bioinformatics 38, 2049–2051 (2022).

    Google Scholar 

  42. Kerpedjiev, P. et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 19, 125 (2018).

    Google Scholar 

  43. Sharakhova, M. V. et al. Genome mapping and characterization of the Anopheles gambiae heterochromatin. BMC Genom. 11, 459 (2010).

    Google Scholar 

  44. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Google Scholar 

  45. Olson, D. R. & Wheeler, T. J. ULTRA-effective labeling of tandem repeats in genomic sequence. Bioinform. Adv. 4, vbae149 (2024).

    Google Scholar 

  46. Krzywinski, J., Sangaré, D. & Besansky, N. J. Satellite DNA from the Y chromosome of the malaria vector Anopheles gambiae. Genetics 169, 185–196 (2005).

    Google Scholar 

  47. Sim, S. B. et al. Genome report: chromosome-scale genome assembly of the West Indian fruit fly Anastrepha obliqua (Diptera: Tephritidae). G3 14, jkae024 (2024).

    Google Scholar 

  48. Congrains, C. et al. Chromosome-scale genome of the polyphagous pest Anastrepha ludens (Diptera: Tephritidae) provides insights on sex chromosome evolution in Anastrepha. G3 14, jkae239 (2024).

    Google Scholar 

  49. Hansen, T. E. et al. Genome report: chromosome-scale genome assembly of the Olive fly Bactrocera oleae (Diptera: Tephritidae). G3 https://doi.org/10.1093/g3journal/jkaf235 (2025).

    Google Scholar 

  50. Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. https://www.osti.gov/servlets/purl/1241166 (2014).

  51. Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).

    Google Scholar 

  52. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Google Scholar 

  53. Porubsky, D. et al. SVbyEye: a visual tool to characterize structural variation among whole-genome assemblies. Bioinformatics 41, btaf332 (2025).

  54. Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    Google Scholar 

  55. RepeatMasker Home Page. https://www.repeatmasker.org/.

  56. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Google Scholar 

  57. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e23 (2020).

    Google Scholar 

  58. Soto, D. C. et al. Human-specific gene expansions contribute to brain evolution. Cell https://doi.org/10.1016/j.cell.2025.06.037 (2025).

  59. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Google Scholar 

  60. McGinty, S. P. et al. CiFi: accurate long-read chromosome conformation capture with low-input requirements. Zenodo https://doi.org/10.5281/zenodo.17526543 (2025).

  61. Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2013).

    Google Scholar 

Download references