References
-
Murphy, K. et al. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Sci. Rep. 7, 40597 (2017).
-
Albenzio, M. et al. Milk from different species: relationship between protein fractions and inflammatory response in infants affected by generalized epilepsy. J. Dairy Sci. 99, 5032–5038 (2016).
-
Dairy animals. DairyProductionProducts https://www.fao.org/dairy-production-products/production/dairy-animals/en/
-
Kailasapathy, K. Chemical composition, physical, and functional properties of milk and milk ingredients. in Dairy Processing and Quality Assurance 77–105 (Wiley, 2015). https://doi.org/10.1002/9781118810279.ch04.
-
Foroutan, A. et al. Chemical composition of commercial cow’s milk. J. Agric. Food Chem. 67, 4897–4914 (2019).
-
Marangoni, F. et al. Cow’s milk consumption and health: A health professional’s guide. J. Am. Coll. Nutr. 38, 197–208 (2019).
-
Claeys, W. L. et al. Raw or heated cow milk consumption: Review of risks and benefits. Food Control. 31, 251–262 (2013).
-
Steele, J. H. History, trends, and extent of pasteurization. J. Am. Vet. Med. Assoc. 217, 175–178 (2000).
-
Macdonald, L. E. et al. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. J. Food Prot. 74, 1814–1832 (2011).
-
Coutinho, N. M. et al. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 74, 56–68 (2018).
-
de Oliveira Neves, L. N. & de Leal, M. A. Quantification of lactose and lactulose in hydrolysed-lactose UHT milk using capillary zone electrophoresis. Int. Dairy J. 106, 104710 (2020).
-
Nikmaram, N. & Keener, K. M. The effects of cold plasma technology on physical, nutritional, and sensory properties of milk and milk products. LWT 154, 112729 (2022).
-
Zarachi, A. et al. Morphometric correlations of the voice category (VC) in professional singers with oropharyngeal and laryngeal anatomy using stroboscopy and cervical posteroanterior radiography. IJOHNS 10, 277–299 (2021).
-
Phan, K. T. K., Phan, H. T., Brennan, C. S. & Phimolsiripol, Y. Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. Int. J. Food Sci. Technol. 52, 2127–2137 (2017).
-
Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O – in aqueous solution. J. Phys. Chem. Ref. Data. 17, 513–886 (1988).
-
Cooper, W. J. & Zepp, R. G. Hydrogen peroxide decay in waters with suspended soils: Evidence for biologically mediated processes. Can. J. Fish. Aquat. Sci. 47, 888–893 (1990).
-
Klockow, P. A. & Keener, K. M. Safety and quality assessment of packaged spinach treated with a novel ozone-generation system. LWT – Food Sci. Technol. 42, 1047–1053 (2009).
-
Phaniendra, A., Jestadi, D. B. & Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Ind. J. Clin. Biochem. 30, 11–26 (2015).
-
Kohen, R. & Nyska, A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 30, 620–650 (2002).
-
Wong, K. S., Chew, N. S. L., Low, M. & Tan, M. K. Plasma-activated water: Physicochemical Properties, generation techniques, and applications. Processes 11, 2213 (2023).
-
Ozen, E. & Singh, R. K. Atmospheric cold plasma treatment of fruit juices: A review. Trends Food Sci. Technol. 103, 144–151 (2020).
-
López, M. et al. A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness, and applications. Front. Microbiol. 10, 622 (2019).
-
Laroussi, M. Low temperature plasma-based sterilization: Overview and state-of-the-art. Plasma Processes Polym. 2, 391–400 (2005).
-
Moisan, M. et al. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 74, 349–358 (2002).
-
Kim, H. J. et al. Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control. 47, 451–456 (2015).
-
Liao, X. et al. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 75, 83–91 (2017).
-
Misra, N. N. & Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 64, 74–86 (2017).
-
Yong, H. I. et al. Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Res. Int. 69, 57–63 (2015).
-
Gurol, C., Ekinci, F. Y., Aslan, N. & Korachi, M. Low temperature plasma for decontamination of E. coli in milk. Int. J. Food Microbiol. 157, 1–5 (2012).
-
Duarte, R. V. et al. Nutritional, physicochemical, and endogenous enzyme assessment of raw milk preserved under hyperbaric storage at variable room temperature. ACS Food Sci. Technol. 2, 961–974 (2022).
-
Han, Y., Cheng, J. H. & Sun, D. W. Activities and conformation changes of food enzymes induced by cold plasma: A review. Crit. Rev. Food Sci. Nutr. 59, 794–811 (2019).
-
Abbas, H. M., Altamim, E. A., Salama, M., Fouad, M. T. & Zahran, H. A. Cold plasma technology: A sustainable approach to milk preservation by reducing pathogens and enhancing oxidative stability. Sustainability 16, 8754 (2024).
-
Kurach, Ł. et al. Etazene induces developmental toxicity in vivo Danio rerio and in Silico studies of new synthetic opioid derivative. Sci. Rep. 11, 24269 (2021).
-
Michalicha, A., Roguska, A., Przekora, A., Budzyńska, B. & Belcarz, A. Poly(levodopa)-modified β-glucan as a candidate for wound dressings. Carbohydr. Polym. 272, 118485 (2021).
-
ISO 4833-2:2013. ISO https://www.iso.org/standard/59509.html
-
ISO 21527-2:2008. ISO https://www.iso.org/standard/38276.html
-
Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. in Methods in Enzymology, vol. 299 152–178A (cademic Press, 1999).
-
Barba, F. J., Esteve, M. J., Tedeschi, P., Brandolini, V. & Frígola, A. A comparative study of the analysis of antioxidant activities of liquid foods employing spectrophotometric, fluorometric, and chemiluminescent methods. Food Anal. Methods. 6, 317–327 (2013).
-
Rangappa, K. S. Studies on the refractive index of milk. Proc. Indian Acad. Sci. 25, 86–94 (1947).
-
Aernouts, B. et al. Visible and near-infrared bulk optical properties of Raw milk. J. Dairy Sci. 98, 6727–6738 (2015).
-
Dharini, M., Jaspin, S. & Mahendran, R. Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chem. 405, 134746 (2023).
-
Li, Y. H., Wang, W. J., Zhang, F., Shao, Z. P. & Guo, L. Formation of the oxidized flavor compounds at different heat treatment and changes in the oxidation stability of milk. Food Sci. Nutr. 7, 238–246 (2019).
-
Wang, Y. et al. The impact of thermal treatment intensity on proteins, fatty acids, macro/micro-nutrients, flavor, and heating markers of milk—A comprehensive review. Int. J. Mol. Sci. 25, 8670 (2024).
-
Rysstad, G. & Kolstad, J. Extended shelf life milk—Advances in technology. Int. J. Dairy Technol. 59, 85–96 (2006).
-
Souleymane, S., Liliane, K. M., Serge, G. S., Abdoulaye, T. & Réné, S. Y. Microbiological quality of raw and pasteurized milk from the Korhogo dairy. Am. J. Microbiol. Res. 12, 13–17 (2024).
-
ISO 6611:2004. ISO https://www.iso.org/standard/40473.html
-
http://g.ekspert.infor.pl/p/_dane/akty_pdf/DZU/2002/117/1011.pdf.
-
Schlüter, O., Fröhling, A. Non-thermal processing | cold plasma for bioefficient food processing. in Encyclopedia of Food Microbiology (Second Edition) (eds Batt, C. A. & Tortorello, M. L.) 948–953 (Academic Press, Oxford, 2014). https://doi.org/10.1016/B978-0-12-384730-0.00402-X
-
Nishime, T. M. C. et al. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf. Coat. Technol. 312, 19–24 (2017).
-
Murali, R. et al. Antimicrobial activity of cold atmospheric plasma on bacterial strains derived from patients with diabetic foot ulcers. J. Microbiol. Biotechnol. 34, 2353–2361 (2024).
-
Widyaningrum, D., Sebastian, C. & Tota Pirdo, K. Application of non-thermal plasma for milk sterilization: A review. IOP Conf. Ser. : Earth Environ. Sci. 794, 012146 (2021).
-
Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S. & Cullen, P. J. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 3, 159–170 (2011).
-
Ahvanooei, M. R. R., Norouzian, M. A. & Vahmani, P. Beneficial effects of vitamins, minerals, and bioactive peptides on strengthening the immune system against COVID-19 and the role of cow’s milk in the supply of these nutrients. Biol. Trace Elem. Res. 200, 4664–4677 (2022).
-
Asadullah et al. Study to evaluate the impact of heat treatment on water soluble vitamins in milk. J. Pak. Med. Assoc. 60, 909–912 (2010).
-
Sharma, S. & Singh, R. K. Effect of atmospheric cold plasma treatment on acid gelation properties of skim milk: Rheology and textural studies. Food Res. Int. 172, 113212 (2023).
-
Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A. N. & Rodrigues, S. Cold plasma effects on functional compounds of Siriguela juice. Food Bioprocess. Technol. 12, 110–121 (2019).
-
Dong, X. Y. & Yang, Y. L. A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food Bioprocess. Technol. 12, 1409–1421 (2019).
-
Shan, C., Zhou, Y. & Liu, M. Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma 252, 1397–1405 (2015).
-
Mehta, D., Sharma, N., Bansal, V., Sangwan, R. S. & Yadav, S. K. Impact of ultrasonication, ultraviolet and atmospheric cold plasma processing on quality parameters of tomato-based beverage in comparison with thermal processing. Innov. Food Sci. Emerg. Technol. 52, 343–349 (2019).
-
Fardet, A., Dupont, D., Rioux, L. E. & Turgeon, S. L. Influence of food structure on dairy protein, lipid and calcium bioavailability: A narrative review of evidence. Crit. Rev. Food Sci. Nutr. 59, 1987–2010 (2019).
-
Shkembi, B. & Huppertz, T. Calcium absorption from food products: Food matrix effects. Nutrients 14, 180 (2021).
-
Chauhan, S., Powar, P. & Mehra, R. A review on nutritional advantages and nutraceutical properties of cow and goat milk. Int. J. Appl. Res. 7, 101–105 (2021).
-
Shen, L., Van Dael, P. & Deelstra, H. Evaluation of an in vitro method for the estimation of the selenium availability from cow’s milk. Z. Lebensm Unters Forch. 197, 342–345 (1993).
-
Guggisberg, D., Loosli, S., Blaser, C., Badertscher, R. & Schmidt, R. Impact of cheese milk cold storage on milk coagulation properties, calcium contents, and cheese yield. Int. Dairy J. 134, 105465 (2022).
-
Walther, B. et al. Comparison of nutritional composition between plant-based drinks and cow’s milk. Front Nutr 9, 988707 (2022).
-
Manoharan, D., Stephen, J. & Radhakrishnan, M. Study on low-pressure plasma system for continuous decontamination of milk and its quality evaluation. J. Food Process. Preserv. 45, e15138 (2021).
-
Nikmaram, N. & Keener, K. M. The effects of cold plasma technology on physical, nutritional, and sensory properties of milk and milk products. LWT 154, 112729 (2022).
-
Coutinho, N. M. et al. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 74, 56–68 (2018).
-
Rout, S., Panda, P. K., Dash, P., Srivastav, P. P. & Hsieh, C. T. Cold plasma-induced modulation of protein and lipid macromolecules: A review. Int. J. Mol. Sci. 26, 1564 (2025).
-
Yoo, S. H. et al. Effect of Heat-Treat methods on the soluble calcium levels in the commercial milk products. Korean J. Food Sci. Anim. Resour. 33, 369–376 (2013).
-
Cosson, A. et al. Identification and quantification of key phytochemicals in peas—Linking compounds with sensory attributes. Food Chem. 385, 132615 (2022).
-
Lee, S., Humphries, D., Cockman, D. A., Givens, D. & Spencer, J. Accumulation of citrus flavanones in bovine milk following citrus pulp incorporation into the diet of dairy cows. EC Nutr., 7(4), 143–154 (2017).
-
Calligaris, S., Manzocco, L., Anese, M. & Nicoli, M. C. Effect of heat-treatment on the antioxidant and pro-oxidant activity of milk. Int. Dairy J. 14, 421–427 (2004).
-
Chen, D. et al. Evaluation of Cronobacter Sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chem. 290, 270–276 (2019).
-
Bayati, M., Lund, M. N., Tiwari, B. K. & Poojary, M. M. Chemical and physical changes induced by cold plasma treatment of foods: A critical review. Compr. Rev. Food Sci. Food Saf. 23, e13376 (2024).
-
Cheng, H. H., Chen, S. S., Yoshizuka, K. & Chen, Y. C. Degradation of phenolic compounds in water by non-thermal plasma treatment. J. Water Chem. Technol. 34, 179–189 (2012).
-
Kumar, S., Pipliya, S. & Srivastav, P. P. Effect of cold plasma on different polyphenol compounds: A review. J. Food Process. Eng. 46, e14203 (2023).
-
Silveira, M. R. et al. Guava-flavored Whey beverage processed by cold plasma technology: Bioactive compounds, fatty acid profile and volatile compounds. Food Chem. 279, 120–127 (2019).
-
Zhang, X. et al. Milk consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses in humans. Nutr. Metab.. 18, 7 (2021).
-
Xie, G. et al. Comparison between hydrodynamic and ultrasound cavitation on the inactivation of Lipoxygenase and physicochemical properties of soy milk. Ultrason. Sonochem. 101, 106692 (2023).
-
Zhao, L. et al. Effect of ultrasound pretreatment on rennet-induced coagulation properties of goat’s milk. Food Chem. 165, 167–174 (2014).
-
Sharma, S. & Singh, R. K. Effect of atmospheric pressure cold plasma treatment time and composition of feed gas on properties of skim milk. LWT 154, 112747 (2022).
-
Karlsson, M. A., Langton, M., Innings, F., Wikström, M. & Lundh, Å. S. Short communication: Variation in the composition and properties of Swedish Raw milk for ultra-high-temperature processing. J. Dairy Sci. 100, 2582–2590 (2017).
-
Tsioulpas, A., Koliandris, A., Grandison, A. S. & Lewis, M. J. Effects of stabiliser addition and in-container sterilisation on selected properties of milk related to casein micelle stability. Food Chem. 122, 1027–1034 (2010).
-
Anema, S. G. Effect of milk solids concentration on the pH, soluble calcium and soluble phosphate levels of milk during heating. Dairy Sci. Technol. 89, 501–510 (2009).
-
Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H. & O’Mahony, J. A. Dairy Chemistry and Biochemistry (Springer International Publishing, 2015). https://doi.org/10.1007/978-3-319-14892-2
-
Wu, X., Luo, Y., Zhao, F., Mu, G. & M, S. M. & Influence of dielectric barrier discharge cold plasma on physicochemical property of milk for sterilization. Plasma Processes Polym. 18, 1900219 (2021).
-
Pankaj, S. K. & Keener, K. M. Chapter 26—Cold plasma processing of fruit juices. in Fruit Juices (eds (eds Rajauria, G. & Tiwari, B. K.) 529–537 (Academic, San Diego, 2018). https://doi.org/10.1016/B978-0-12-802230-6.00026-6.
-
Zheng, Y. et al. Reduction of Phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. J. Hazard. Mater. 377, 98–105 (2019).
-
García-Pérez, F. J. et al. Effect of orange fiber addition on yogurt color during fermentation and cold storage. Color. Res. Appl.. 30, 457–463 (2005).
-
Wang, S. et al. Processing sheep milk by cold plasma technology: Impacts on the microbial inactivation, physicochemical characteristics, and protein structure. LWT 153, 112573 (2022).
-
Jahromi, M., Niakousari, M., Golmakani, M. T., Ajalloueian, F. & Khalesi, M. Effect of dielectric barrier discharge atmospheric cold plasma treatment on structural, thermal and techno-functional characteristics of sodium caseinate. Innov. Food Sci. Emerg. Technol. 66, 102542 (2020).
-
Segat, A., Misra, N. N., Cullen, P. J. & Innocente, N. Atmospheric pressure cold plasma (ACP) treatment of Whey protein isolate model solution. Innov. Food Sci. Emerg. Technol. 29, 247–254 (2015).
-
Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M. & Lechner, N. Study of pulsed electric field treated citrus juices. Innov. Food Sci. Emerg. Technol. 7, 49–54 (2006).
-
Wahono, S. K. et al. Plasma activation on natural mordenite-clinoptilolite zeolite for water vapor adsorption enhancement. Appl. Surf. Sci. 483, 940–946 (2019).
-
Sharma, S., Prabhakar, H. & Singh, R. K. Atmospheric cold plasma-induced changes in milk proteins. Food Bioprocess. Technol. 15, 2737–2748 (2022).
-
Ng, S. W. et al. The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins. Food Chem. 342, 128283 (2021).
-
Coutinho, N. M. et al. Chocolate milk drink processed by cold plasma technology: Physical characteristics, thermal behavior and microstructure. LWT 102, 324–329 (2019).
-
Nikmaram, N. & Keener, K. M. The effects of cold plasma technology on physical, nutritional, and sensory properties of milk and milk products. LWT 154, 112729 (2022).
-
Dacanal, G. C. Particle size and morphology in food science and technology: A review. Int. J. Food Sci. Tech. 59, 6821–6833 (2024).
-
Magwere, A. A. et al. A comparative study of the sensory and physicochemical properties of cow milk and Plant-Based milk alternatives. J. Food Sci. 90, e70370 (2025).
-
Premjit, Y. et al. Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling. Food Res. Int. 151, 110879 (2022).
-
Thum, C., Roy, N. C., Everett, D. W. & McNabb, W. C. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit. Rev. Food Sci. Nutr. 63, 87–113 (2023).
-
Durand, A., Franks, G. V. & Hosken, R. W. Particle sizes and stability of UHT bovine, cereal and grain milks. Food Hydrocoll. 17, 671–678 (2003).
-
Li, B. et al. Processing milk causes the formation of protein oxidation products which impair spatial learning and memory in rats. RSC Adv. 9, 22161–22175 (2019).
