Cold plasma treatment as a way to sanitize bovine milk while maintaining full nutritional value, stability, toxicological and microbiological safety

cold-plasma-treatment-as-a-way-to-sanitize-bovine-milk-while-maintaining-full-nutritional-value,-stability,-toxicological-and-microbiological-safety
Cold plasma treatment as a way to sanitize bovine milk while maintaining full nutritional value, stability, toxicological and microbiological safety

References

  1. Murphy, K. et al. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Sci. Rep. 7, 40597 (2017).

    Google Scholar 

  2. Albenzio, M. et al. Milk from different species: relationship between protein fractions and inflammatory response in infants affected by generalized epilepsy. J. Dairy Sci. 99, 5032–5038 (2016).

    Google Scholar 

  3. Dairy animals. DairyProductionProducts https://www.fao.org/dairy-production-products/production/dairy-animals/en/

  4. Kailasapathy, K. Chemical composition, physical, and functional properties of milk and milk ingredients. in Dairy Processing and Quality Assurance 77–105 (Wiley, 2015). https://doi.org/10.1002/9781118810279.ch04.

    Google Scholar 

  5. Foroutan, A. et al. Chemical composition of commercial cow’s milk. J. Agric. Food Chem. 67, 4897–4914 (2019).

    Google Scholar 

  6. Marangoni, F. et al. Cow’s milk consumption and health: A health professional’s guide. J. Am. Coll. Nutr. 38, 197–208 (2019).

    Google Scholar 

  7. Claeys, W. L. et al. Raw or heated cow milk consumption: Review of risks and benefits. Food Control. 31, 251–262 (2013).

    Google Scholar 

  8. Steele, J. H. History, trends, and extent of pasteurization. J. Am. Vet. Med. Assoc. 217, 175–178 (2000).

    Google Scholar 

  9. Macdonald, L. E. et al. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. J. Food Prot. 74, 1814–1832 (2011).

    Google Scholar 

  10. Coutinho, N. M. et al. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 74, 56–68 (2018).

    Google Scholar 

  11. de Oliveira Neves, L. N. & de Leal, M. A. Quantification of lactose and lactulose in hydrolysed-lactose UHT milk using capillary zone electrophoresis. Int. Dairy J. 106, 104710 (2020).

    Google Scholar 

  12. Nikmaram, N. & Keener, K. M. The effects of cold plasma technology on physical, nutritional, and sensory properties of milk and milk products. LWT 154, 112729 (2022).

    Google Scholar 

  13. Zarachi, A. et al. Morphometric correlations of the voice category (VC) in professional singers with oropharyngeal and laryngeal anatomy using stroboscopy and cervical posteroanterior radiography. IJOHNS 10, 277–299 (2021).

    Google Scholar 

  14. Phan, K. T. K., Phan, H. T., Brennan, C. S. & Phimolsiripol, Y. Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. Int. J. Food Sci. Technol. 52, 2127–2137 (2017).

    Google Scholar 

  15. Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O – in aqueous solution. J. Phys. Chem. Ref. Data. 17, 513–886 (1988).

    Google Scholar 

  16. Cooper, W. J. & Zepp, R. G. Hydrogen peroxide decay in waters with suspended soils: Evidence for biologically mediated processes. Can. J. Fish. Aquat. Sci. 47, 888–893 (1990).

    Google Scholar 

  17. Klockow, P. A. & Keener, K. M. Safety and quality assessment of packaged spinach treated with a novel ozone-generation system. LWT – Food Sci. Technol. 42, 1047–1053 (2009).

    Google Scholar 

  18. Phaniendra, A., Jestadi, D. B. & Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Ind. J. Clin. Biochem. 30, 11–26 (2015).

    Google Scholar 

  19. Kohen, R. & Nyska, A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 30, 620–650 (2002).

    Google Scholar 

  20. Wong, K. S., Chew, N. S. L., Low, M. & Tan, M. K. Plasma-activated water: Physicochemical Properties, generation techniques, and applications. Processes 11, 2213 (2023).

  21. Ozen, E. & Singh, R. K. Atmospheric cold plasma treatment of fruit juices: A review. Trends Food Sci. Technol. 103, 144–151 (2020).

    Google Scholar 

  22. López, M. et al. A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness, and applications. Front. Microbiol. 10, 622 (2019).

  23. Laroussi, M. Low temperature plasma-based sterilization: Overview and state-of-the-art. Plasma Processes Polym. 2, 391–400 (2005).

    Google Scholar 

  24. Moisan, M. et al. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 74, 349–358 (2002).

    Google Scholar 

  25. Kim, H. J. et al. Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control. 47, 451–456 (2015).

    Google Scholar 

  26. Liao, X. et al. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 75, 83–91 (2017).

    Google Scholar 

  27. Misra, N. N. & Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 64, 74–86 (2017).

    Google Scholar 

  28. Yong, H. I. et al. Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Res. Int. 69, 57–63 (2015).

    Google Scholar 

  29. Gurol, C., Ekinci, F. Y., Aslan, N. & Korachi, M. Low temperature plasma for decontamination of E. coli in milk. Int. J. Food Microbiol. 157, 1–5 (2012).

    Google Scholar 

  30. Duarte, R. V. et al. Nutritional, physicochemical, and endogenous enzyme assessment of raw milk preserved under hyperbaric storage at variable room temperature. ACS Food Sci. Technol. 2, 961–974 (2022).

    Google Scholar 

  31. Han, Y., Cheng, J. H. & Sun, D. W. Activities and conformation changes of food enzymes induced by cold plasma: A review. Crit. Rev. Food Sci. Nutr. 59, 794–811 (2019).

    Google Scholar 

  32. Abbas, H. M., Altamim, E. A., Salama, M., Fouad, M. T. & Zahran, H. A. Cold plasma technology: A sustainable approach to milk preservation by reducing pathogens and enhancing oxidative stability. Sustainability 16, 8754 (2024).

    Google Scholar 

  33. Kurach, Ł. et al. Etazene induces developmental toxicity in vivo Danio rerio and in Silico studies of new synthetic opioid derivative. Sci. Rep. 11, 24269 (2021).

    Google Scholar 

  34. Michalicha, A., Roguska, A., Przekora, A., Budzyńska, B. & Belcarz, A. Poly(levodopa)-modified β-glucan as a candidate for wound dressings. Carbohydr. Polym. 272, 118485 (2021).

    Google Scholar 

  35. ISO 4833-2:2013. ISO https://www.iso.org/standard/59509.html

  36. ISO 21527-2:2008. ISO https://www.iso.org/standard/38276.html

  37. Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. in Methods in Enzymology, vol. 299 152–178A (cademic Press, 1999).

  38. Barba, F. J., Esteve, M. J., Tedeschi, P., Brandolini, V. & Frígola, A. A comparative study of the analysis of antioxidant activities of liquid foods employing spectrophotometric, fluorometric, and chemiluminescent methods. Food Anal. Methods. 6, 317–327 (2013).

    Google Scholar 

  39. Rangappa, K. S. Studies on the refractive index of milk. Proc. Indian Acad. Sci. 25, 86–94 (1947).

  40. Aernouts, B. et al. Visible and near-infrared bulk optical properties of Raw milk. J. Dairy Sci. 98, 6727–6738 (2015).

    Google Scholar 

  41. Dharini, M., Jaspin, S. & Mahendran, R. Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chem. 405, 134746 (2023).

    Google Scholar 

  42. Li, Y. H., Wang, W. J., Zhang, F., Shao, Z. P. & Guo, L. Formation of the oxidized flavor compounds at different heat treatment and changes in the oxidation stability of milk. Food Sci. Nutr. 7, 238–246 (2019).

    Google Scholar 

  43. Wang, Y. et al. The impact of thermal treatment intensity on proteins, fatty acids, macro/micro-nutrients, flavor, and heating markers of milk—A comprehensive review. Int. J. Mol. Sci. 25, 8670 (2024).

    Google Scholar 

  44. Rysstad, G. & Kolstad, J. Extended shelf life milk—Advances in technology. Int. J. Dairy Technol. 59, 85–96 (2006).

    Google Scholar 

  45. Souleymane, S., Liliane, K. M., Serge, G. S., Abdoulaye, T. & Réné, S. Y. Microbiological quality of raw and pasteurized milk from the Korhogo dairy. Am. J. Microbiol. Res. 12, 13–17 (2024).

    Google Scholar 

  46. ISO 6611:2004. ISO https://www.iso.org/standard/40473.html

  47. http://g.ekspert.infor.pl/p/_dane/akty_pdf/DZU/2002/117/1011.pdf.

  48. Schlüter, O., Fröhling, A. Non-thermal processing | cold plasma for bioefficient food processing. in Encyclopedia of Food Microbiology (Second Edition) (eds Batt, C. A. & Tortorello, M. L.) 948–953 (Academic Press, Oxford, 2014). https://doi.org/10.1016/B978-0-12-384730-0.00402-X

  49. Nishime, T. M. C. et al. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf. Coat. Technol. 312, 19–24 (2017).

    Google Scholar 

  50. Murali, R. et al. Antimicrobial activity of cold atmospheric plasma on bacterial strains derived from patients with diabetic foot ulcers. J. Microbiol. Biotechnol. 34, 2353–2361 (2024).

    Google Scholar 

  51. Widyaningrum, D., Sebastian, C. & Tota Pirdo, K. Application of non-thermal plasma for milk sterilization: A review. IOP Conf. Ser. : Earth Environ. Sci. 794, 012146 (2021).

    Google Scholar 

  52. Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S. & Cullen, P. J. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 3, 159–170 (2011).

    Google Scholar 

  53. Ahvanooei, M. R. R., Norouzian, M. A. & Vahmani, P. Beneficial effects of vitamins, minerals, and bioactive peptides on strengthening the immune system against COVID-19 and the role of cow’s milk in the supply of these nutrients. Biol. Trace Elem. Res. 200, 4664–4677 (2022).

    Google Scholar 

  54. Asadullah et al. Study to evaluate the impact of heat treatment on water soluble vitamins in milk. J. Pak. Med. Assoc. 60, 909–912 (2010).

    Google Scholar 

  55. Sharma, S. & Singh, R. K. Effect of atmospheric cold plasma treatment on acid gelation properties of skim milk: Rheology and textural studies. Food Res. Int. 172, 113212 (2023).

    Google Scholar 

  56. Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A. N. & Rodrigues, S. Cold plasma effects on functional compounds of Siriguela juice. Food Bioprocess. Technol. 12, 110–121 (2019).

    Google Scholar 

  57. Dong, X. Y. & Yang, Y. L. A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food Bioprocess. Technol. 12, 1409–1421 (2019).

    Google Scholar 

  58. Shan, C., Zhou, Y. & Liu, M. Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma 252, 1397–1405 (2015).

    Google Scholar 

  59. Mehta, D., Sharma, N., Bansal, V., Sangwan, R. S. & Yadav, S. K. Impact of ultrasonication, ultraviolet and atmospheric cold plasma processing on quality parameters of tomato-based beverage in comparison with thermal processing. Innov. Food Sci. Emerg. Technol. 52, 343–349 (2019).

    Google Scholar 

  60. Fardet, A., Dupont, D., Rioux, L. E. & Turgeon, S. L. Influence of food structure on dairy protein, lipid and calcium bioavailability: A narrative review of evidence. Crit. Rev. Food Sci. Nutr. 59, 1987–2010 (2019).

    Google Scholar 

  61. Shkembi, B. & Huppertz, T. Calcium absorption from food products: Food matrix effects. Nutrients 14, 180 (2021).

    Google Scholar 

  62. Chauhan, S., Powar, P. & Mehra, R. A review on nutritional advantages and nutraceutical properties of cow and goat milk. Int. J. Appl. Res. 7, 101–105 (2021).

    Google Scholar 

  63. Shen, L., Van Dael, P. & Deelstra, H. Evaluation of an in vitro method for the estimation of the selenium availability from cow’s milk. Z. Lebensm Unters Forch. 197, 342–345 (1993).

    Google Scholar 

  64. Guggisberg, D., Loosli, S., Blaser, C., Badertscher, R. & Schmidt, R. Impact of cheese milk cold storage on milk coagulation properties, calcium contents, and cheese yield. Int. Dairy J. 134, 105465 (2022).

    Google Scholar 

  65. Walther, B. et al. Comparison of nutritional composition between plant-based drinks and cow’s milk. Front Nutr 9, 988707 (2022).

  66. Manoharan, D., Stephen, J. & Radhakrishnan, M. Study on low-pressure plasma system for continuous decontamination of milk and its quality evaluation. J. Food Process. Preserv. 45, e15138 (2021).

    Google Scholar 

  67. Nikmaram, N. & Keener, K. M. The effects of cold plasma technology on physical, nutritional, and sensory properties of milk and milk products. LWT 154, 112729 (2022).

    Google Scholar 

  68. Coutinho, N. M. et al. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 74, 56–68 (2018).

    Google Scholar 

  69. Rout, S., Panda, P. K., Dash, P., Srivastav, P. P. & Hsieh, C. T. Cold plasma-induced modulation of protein and lipid macromolecules: A review. Int. J. Mol. Sci. 26, 1564 (2025).

    Google Scholar 

  70. Yoo, S. H. et al. Effect of Heat-Treat methods on the soluble calcium levels in the commercial milk products. Korean J. Food Sci. Anim. Resour. 33, 369–376 (2013).

    Google Scholar 

  71. Cosson, A. et al. Identification and quantification of key phytochemicals in peas—Linking compounds with sensory attributes. Food Chem. 385, 132615 (2022).

    Google Scholar 

  72. Lee, S., Humphries, D., Cockman, D. A., Givens, D. & Spencer, J. Accumulation of citrus flavanones in bovine milk following citrus pulp incorporation into the diet of dairy cows. EC Nutr., 7(4), 143–154 (2017).

  73. Calligaris, S., Manzocco, L., Anese, M. & Nicoli, M. C. Effect of heat-treatment on the antioxidant and pro-oxidant activity of milk. Int. Dairy J. 14, 421–427 (2004).

    Google Scholar 

  74. Chen, D. et al. Evaluation of Cronobacter Sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chem. 290, 270–276 (2019).

    Google Scholar 

  75. Bayati, M., Lund, M. N., Tiwari, B. K. & Poojary, M. M. Chemical and physical changes induced by cold plasma treatment of foods: A critical review. Compr. Rev. Food Sci. Food Saf. 23, e13376 (2024).

    Google Scholar 

  76. Cheng, H. H., Chen, S. S., Yoshizuka, K. & Chen, Y. C. Degradation of phenolic compounds in water by non-thermal plasma treatment. J. Water Chem. Technol. 34, 179–189 (2012).

    Google Scholar 

  77. Kumar, S., Pipliya, S. & Srivastav, P. P. Effect of cold plasma on different polyphenol compounds: A review. J. Food Process. Eng. 46, e14203 (2023).

    Google Scholar 

  78. Silveira, M. R. et al. Guava-flavored Whey beverage processed by cold plasma technology: Bioactive compounds, fatty acid profile and volatile compounds. Food Chem. 279, 120–127 (2019).

    Google Scholar 

  79. Zhang, X. et al. Milk consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses in humans. Nutr. Metab.. 18, 7 (2021).

    Google Scholar 

  80. Xie, G. et al. Comparison between hydrodynamic and ultrasound cavitation on the inactivation of Lipoxygenase and physicochemical properties of soy milk. Ultrason. Sonochem. 101, 106692 (2023).

    Google Scholar 

  81. Zhao, L. et al. Effect of ultrasound pretreatment on rennet-induced coagulation properties of goat’s milk. Food Chem. 165, 167–174 (2014).

    Google Scholar 

  82. Sharma, S. & Singh, R. K. Effect of atmospheric pressure cold plasma treatment time and composition of feed gas on properties of skim milk. LWT 154, 112747 (2022).

    Google Scholar 

  83. Karlsson, M. A., Langton, M., Innings, F., Wikström, M. & Lundh, Å. S. Short communication: Variation in the composition and properties of Swedish Raw milk for ultra-high-temperature processing. J. Dairy Sci. 100, 2582–2590 (2017).

    Google Scholar 

  84. Tsioulpas, A., Koliandris, A., Grandison, A. S. & Lewis, M. J. Effects of stabiliser addition and in-container sterilisation on selected properties of milk related to casein micelle stability. Food Chem. 122, 1027–1034 (2010).

    Google Scholar 

  85. Anema, S. G. Effect of milk solids concentration on the pH, soluble calcium and soluble phosphate levels of milk during heating. Dairy Sci. Technol. 89, 501–510 (2009).

    Google Scholar 

  86. Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H. & O’Mahony, J. A. Dairy Chemistry and Biochemistry (Springer International Publishing, 2015). https://doi.org/10.1007/978-3-319-14892-2

  87. Wu, X., Luo, Y., Zhao, F., Mu, G. & M, S. M. & Influence of dielectric barrier discharge cold plasma on physicochemical property of milk for sterilization. Plasma Processes Polym. 18, 1900219 (2021).

    Google Scholar 

  88. Pankaj, S. K. & Keener, K. M. Chapter 26—Cold plasma processing of fruit juices. in Fruit Juices (eds (eds Rajauria, G. & Tiwari, B. K.) 529–537 (Academic, San Diego, 2018). https://doi.org/10.1016/B978-0-12-802230-6.00026-6.

    Google Scholar 

  89. Zheng, Y. et al. Reduction of Phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. J. Hazard. Mater. 377, 98–105 (2019).

    Google Scholar 

  90. García-Pérez, F. J. et al. Effect of orange fiber addition on yogurt color during fermentation and cold storage. Color. Res. Appl.. 30, 457–463 (2005).

    Google Scholar 

  91. Wang, S. et al. Processing sheep milk by cold plasma technology: Impacts on the microbial inactivation, physicochemical characteristics, and protein structure. LWT 153, 112573 (2022).

    Google Scholar 

  92. Jahromi, M., Niakousari, M., Golmakani, M. T., Ajalloueian, F. & Khalesi, M. Effect of dielectric barrier discharge atmospheric cold plasma treatment on structural, thermal and techno-functional characteristics of sodium caseinate. Innov. Food Sci. Emerg. Technol. 66, 102542 (2020).

    Google Scholar 

  93. Segat, A., Misra, N. N., Cullen, P. J. & Innocente, N. Atmospheric pressure cold plasma (ACP) treatment of Whey protein isolate model solution. Innov. Food Sci. Emerg. Technol. 29, 247–254 (2015).

    Google Scholar 

  94. Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M. & Lechner, N. Study of pulsed electric field treated citrus juices. Innov. Food Sci. Emerg. Technol. 7, 49–54 (2006).

    Google Scholar 

  95. Wahono, S. K. et al. Plasma activation on natural mordenite-clinoptilolite zeolite for water vapor adsorption enhancement. Appl. Surf. Sci. 483, 940–946 (2019).

    Google Scholar 

  96. Sharma, S., Prabhakar, H. & Singh, R. K. Atmospheric cold plasma-induced changes in milk proteins. Food Bioprocess. Technol. 15, 2737–2748 (2022).

    Google Scholar 

  97. Ng, S. W. et al. The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins. Food Chem. 342, 128283 (2021).

    Google Scholar 

  98. Coutinho, N. M. et al. Chocolate milk drink processed by cold plasma technology: Physical characteristics, thermal behavior and microstructure. LWT 102, 324–329 (2019).

    Google Scholar 

  99. Nikmaram, N. & Keener, K. M. The effects of cold plasma technology on physical, nutritional, and sensory properties of milk and milk products. LWT 154, 112729 (2022).

    Google Scholar 

  100. Dacanal, G. C. Particle size and morphology in food science and technology: A review. Int. J. Food Sci. Tech. 59, 6821–6833 (2024).

    Google Scholar 

  101. Magwere, A. A. et al. A comparative study of the sensory and physicochemical properties of cow milk and Plant-Based milk alternatives. J. Food Sci. 90, e70370 (2025).

    Google Scholar 

  102. Premjit, Y. et al. Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling. Food Res. Int. 151, 110879 (2022).

    Google Scholar 

  103. Thum, C., Roy, N. C., Everett, D. W. & McNabb, W. C. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit. Rev. Food Sci. Nutr. 63, 87–113 (2023).

    Google Scholar 

  104. Durand, A., Franks, G. V. & Hosken, R. W. Particle sizes and stability of UHT bovine, cereal and grain milks. Food Hydrocoll. 17, 671–678 (2003).

    Google Scholar 

  105. Li, B. et al. Processing milk causes the formation of protein oxidation products which impair spatial learning and memory in rats. RSC Adv. 9, 22161–22175 (2019).

    Google Scholar 

Download references