Combination of bacteriophage and antibiofilm compounds from phyllosphere bacteria as a comprehensive strategy for aquaculture and food pathogen control

combination-of-bacteriophage-and-antibiofilm-compounds-from-phyllosphere-bacteria-as-a-comprehensive-strategy-for-aquaculture-and-food-pathogen-control
Combination of bacteriophage and antibiofilm compounds from phyllosphere bacteria as a comprehensive strategy for aquaculture and food pathogen control

References

  1. Sharma, D., Misba, L. & Khan, A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 8, 1. https://doi.org/10.1186/s13756-019-0533-3 (2019).

    Google Scholar 

  2. Vestby, L. K., Grønseth, T., Simm, R. & Nesse, L. L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 9, 2. https://doi.org/10.3390/antibiotics9020059 (2020).

    Google Scholar 

  3. Preda, V. G. & Sa˘ndulescu, O. Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries 7, 10. https://doi.org/10.15190/d.2019.13 (2019).

    Google Scholar 

  4. Guzman, J. P. M. D., Yatip, P., Soowannayan, C. & Maningas, M. B. B. Targeting quorum sensing and biofilm formation in the control of Vibrio harveyi infections in Penaeus vannamei. Aquac Res. 53, 14. https://doi.org/10.1111/are/15995 (2022).

    Google Scholar 

  5. Vadakkan, K., Choudhury, A. A., Gunasekaran, R., Hemapriya, J. & Vijayanand, S. Quorum sensing intervened bacterial signaling: pursuit of its cognizance and repression. J. Genet. Eng. Biotechnol. 16, 2. https://doi.org/10.1016/j.jgeb.2018.07.001 (2018).

    Google Scholar 

  6. Gordon, M. & Ramirez, P. Efficacy and experience of bacteriophages in biofilm-related infections. Antibiotics 13, 125. https://doi.org/10.3390/antibiotics13020125 (2024).

    Google Scholar 

  7. Chang, C. et al. Bacteriophage-mediated control of biofilm: a Romising new dawn for the future. Front. Microbiol. 13 https://doi.org/10.3389/fmicb.2022.825828 (2022).

  8. Rizkinata, D., Waturangi, D. E. & Yulandi, A. Synergistic action of bacteriophage and metabolites of Pseudomonas fluorescens JB3B and Streptomyces Thermocarboxydus 18PM against enterotoxigenic Escherichia coli and Bacillus cereus and their biofilm. BMC Microbiol. 24, 398. https://doi.org/10.1186/s12866-024-03557-1 (2024).

    Google Scholar 

  9. Massoni, J. et al. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 14, 245–258. https://doi.org/10.1186/s12866-020-01867-8 (2020).

    Google Scholar 

  10. Nathalia, O. & Waturangi, D. E. Extract from phyllosphere bacteria with antibiofilm and quorum quenching activity to control several fish pathogenic bacteria. BMC Res. Notes. 14, 1. https://doi.org/10.1186/s13104-021-05612-w (2021).

    Google Scholar 

  11. Bintsis, T. Foodborne pathogens. AIMS Microbiol. 3, 529–563. https://doi.org/10.3934/microbiol.2017.3.529 (2017).

    Google Scholar 

  12. Lukmana, E. O. L. Isolation and characterization of bacteriophage to control Vibrio harveyi as one of major pathogen in aquaculture environment: A master thesis (Atma Jaya Catholic University of Indonesia, 2011).

  13. Irshath, A. A., Rajan, A. A., Vimal, S., Prabhakaran, V. S. & Ganesan, R. Bacterial pathogenesis in various fish diseases: recent advances and specific challenges in vaccine development. Vaccines 11, 1–14. https://doi.org/10.3390/vaccines11020470 (2023).

    Google Scholar 

  14. Kurniawan, J., Waturangi, D. E., Jylyantoro, P. G. S. & Papuangan, N. Ice nucleation active bacteria metabolites as antibiofilm agent to control Aeromonas hydrophila and Streptococcus agalactiae infections in aquaculture. BMC Res. Notes. 17, 166. https://doi.org/10.1186/s13104-024-06821-9 (2024).

    Google Scholar 

  15. Roy, R., Tiwari, M., Donelli, G. & Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9, 522–554. https://doi.org/10.1080/21505594.2017.1313372 (2018).

    Google Scholar 

  16. Ács, N., Gambino, M. & Brønsted, L. Bacteriophage enumeration and detection methods. Front. Microbiol. 11 https://doi.org/10.3389/fmicb.2020.594868 (2020).

  17. Choi, E., Wells, B., Mirabella, G., Atkins, E. & Choi, S. Anti-biofilm activity of Pseudomonas fluorescens culture supernatants on biofilm formation of Staphylococcus epidermidis 1457. BMC Res. Notes. 15, 1–7. https://doi.org/10.1186/s13104-022-06257-z (2022).

    Google Scholar 

  18. Topka-Bielecka, G. et al. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics 10, 1–21. https://doi.org/10.3390/antibiotics10020175 (2021).

    Google Scholar 

  19. Guo, Z., Liu, M. & Zhang, D. Potential of phage depolymerase for the treatment of bacterial biofilms. Virulence 14, 1–19. https://doi.org/10.1080/21505594.2023.2273567 (2023).

  20. Gontijo, M. T. P., Jorge, G. P. & Brocchi, M. Current status of endolysin-based treatments against gram-negative bacteria. Antibiotics 10, 1143. https://doi.org/10.3390/antibiotics10101143 (2021).

  21. Achinas, S., Charalampogiannis, N. & Euverink, G. J. W. A brief recap of microbial adhesion and biofilms. Appl. Sci. 9, 14. https://doi.org/10.3390/app9142801 (2019).

    Google Scholar 

  22. Amador, C. I., Stannius, R. O., Røder, H. L. & Burmølle, M. High-throughput screening alternative to crystal Violet biofilm assay combining fluorescence quantification and imaging. J. Microbiol. Methods. 190, 4. https://doi.org/10.1016/j. mimet.2021.106343 (2021).

    Google Scholar 

  23. Loimaranta, V., Mazurel, D., Deng, D. & Söderling, E. Xylitol and erythritol inhibit real-time biofilm formation of Streptococcus mutans. BMC Microbiol. 20, 1–9. https://doi.org/10.1186/s12866-020-01867-8 (2020).

    Google Scholar 

  24. Tsang, S. T. J., Gwynne, P. J., Gallagher, M. P. & Simpson, A. H. R. W. The biofilm eradication activity of acetic acid in the management of periprosthetic joint infection. Bone Jt. Res. 7, 517–523. https://doi.org/10.1302/2046-3758.78 (2018).

    Google Scholar 

  25. Skerlavag, B. & Boix-Lemonche, G. The potential of surface-immobilized antimicrobial peptides for the enhancement of orthopaedic medical devices: A review. Antibiotics 12, 211. https://doi.org/10.3390/antibiotics12020211 (2023)

  26. Trombetta, D. et al. Study on the mechanisms of the antibacterial action of some plant alpha,beta-unsaturated aldehydes. Lett. Appl. Microbiol. 35, 285–290. https://doi.org/10.1046/j.1472-765X.2002.01190.x (2002).

  27. Juliana Screening of phyllosphere and endopythic microbes producing antibacterial or anti quorum sensing activity from Ageratum conyzoides, Coleus amboinicus, and Psidium guajava: An undergraduate thesis (Atma Jaya Catholic University of Indonesia, 2011)

  28. Rizkinata, D., Kusnadi, V. C., Waturangi, D. E. & Yulandi, A. Isolation and molecular characterization of bacteriophages isolated from lake water and their application in foods against Bacillus cereus. BMC Res. Notes. 18, 364. https://doi.org/10.1186/s13104-025-07436-4 (2025).

    Google Scholar 

  29. Everly, V. & Waturangi, D. E. Metabolite from supernatant of soil and plant-associated bacteria control biofilm of fish pathogens. BMC Res. Notes. 17, 311. https://doi.org/10.1186/s13104-024-06974-7 (2024).

    Google Scholar 

  30. Gandasurya, G. & Waturangi, D. E. Supernatant of plant-associated bacteria potency against biofilms formed by foodborne pathogen and food spoilage bacteria. BMC Res. Notes. 17, 388. https://doi.org/10.1186/s13104-024-06997-0 (2024).

    Google Scholar 

  31. Hardi, E. H. et al. Identification of potentially pathogenic bacteria from tilapia (Oreochromis niloticus) and channel catfish (Clarias batrachus) culture in Samarinda, East Kalimantan, Indonesia. Biodiversitas. 19, 2. https://doi.org/10.13057/biodiv/190215 (2018).

  32. Mulya, E. & Waturangi, D. E. Screening and quantification of anti-quorum sensing and antibiofilm activity of actinomycetes isolates against food spoilage biofilm-forming bacteria. BMC Microbiol. 21, 1. https://doi.org/10.1186/s12866-020-02060-7 (2021).

    Google Scholar 

Download references