References
-
Sharma, D., Misba, L. & Khan, A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 8, 1. https://doi.org/10.1186/s13756-019-0533-3 (2019).
-
Vestby, L. K., Grønseth, T., Simm, R. & Nesse, L. L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 9, 2. https://doi.org/10.3390/antibiotics9020059 (2020).
-
Preda, V. G. & Sa˘ndulescu, O. Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries 7, 10. https://doi.org/10.15190/d.2019.13 (2019).
-
Guzman, J. P. M. D., Yatip, P., Soowannayan, C. & Maningas, M. B. B. Targeting quorum sensing and biofilm formation in the control of Vibrio harveyi infections in Penaeus vannamei. Aquac Res. 53, 14. https://doi.org/10.1111/are/15995 (2022).
-
Vadakkan, K., Choudhury, A. A., Gunasekaran, R., Hemapriya, J. & Vijayanand, S. Quorum sensing intervened bacterial signaling: pursuit of its cognizance and repression. J. Genet. Eng. Biotechnol. 16, 2. https://doi.org/10.1016/j.jgeb.2018.07.001 (2018).
-
Gordon, M. & Ramirez, P. Efficacy and experience of bacteriophages in biofilm-related infections. Antibiotics 13, 125. https://doi.org/10.3390/antibiotics13020125 (2024).
-
Chang, C. et al. Bacteriophage-mediated control of biofilm: a Romising new dawn for the future. Front. Microbiol. 13 https://doi.org/10.3389/fmicb.2022.825828 (2022).
-
Rizkinata, D., Waturangi, D. E. & Yulandi, A. Synergistic action of bacteriophage and metabolites of Pseudomonas fluorescens JB3B and Streptomyces Thermocarboxydus 18PM against enterotoxigenic Escherichia coli and Bacillus cereus and their biofilm. BMC Microbiol. 24, 398. https://doi.org/10.1186/s12866-024-03557-1 (2024).
-
Massoni, J. et al. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J. 14, 245–258. https://doi.org/10.1186/s12866-020-01867-8 (2020).
-
Nathalia, O. & Waturangi, D. E. Extract from phyllosphere bacteria with antibiofilm and quorum quenching activity to control several fish pathogenic bacteria. BMC Res. Notes. 14, 1. https://doi.org/10.1186/s13104-021-05612-w (2021).
-
Bintsis, T. Foodborne pathogens. AIMS Microbiol. 3, 529–563. https://doi.org/10.3934/microbiol.2017.3.529 (2017).
-
Lukmana, E. O. L. Isolation and characterization of bacteriophage to control Vibrio harveyi as one of major pathogen in aquaculture environment: A master thesis (Atma Jaya Catholic University of Indonesia, 2011).
-
Irshath, A. A., Rajan, A. A., Vimal, S., Prabhakaran, V. S. & Ganesan, R. Bacterial pathogenesis in various fish diseases: recent advances and specific challenges in vaccine development. Vaccines 11, 1–14. https://doi.org/10.3390/vaccines11020470 (2023).
-
Kurniawan, J., Waturangi, D. E., Jylyantoro, P. G. S. & Papuangan, N. Ice nucleation active bacteria metabolites as antibiofilm agent to control Aeromonas hydrophila and Streptococcus agalactiae infections in aquaculture. BMC Res. Notes. 17, 166. https://doi.org/10.1186/s13104-024-06821-9 (2024).
-
Roy, R., Tiwari, M., Donelli, G. & Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9, 522–554. https://doi.org/10.1080/21505594.2017.1313372 (2018).
-
Ács, N., Gambino, M. & Brønsted, L. Bacteriophage enumeration and detection methods. Front. Microbiol. 11 https://doi.org/10.3389/fmicb.2020.594868 (2020).
-
Choi, E., Wells, B., Mirabella, G., Atkins, E. & Choi, S. Anti-biofilm activity of Pseudomonas fluorescens culture supernatants on biofilm formation of Staphylococcus epidermidis 1457. BMC Res. Notes. 15, 1–7. https://doi.org/10.1186/s13104-022-06257-z (2022).
-
Topka-Bielecka, G. et al. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics 10, 1–21. https://doi.org/10.3390/antibiotics10020175 (2021).
-
Guo, Z., Liu, M. & Zhang, D. Potential of phage depolymerase for the treatment of bacterial biofilms. Virulence 14, 1–19. https://doi.org/10.1080/21505594.2023.2273567 (2023).
-
Gontijo, M. T. P., Jorge, G. P. & Brocchi, M. Current status of endolysin-based treatments against gram-negative bacteria. Antibiotics 10, 1143. https://doi.org/10.3390/antibiotics10101143 (2021).
-
Achinas, S., Charalampogiannis, N. & Euverink, G. J. W. A brief recap of microbial adhesion and biofilms. Appl. Sci. 9, 14. https://doi.org/10.3390/app9142801 (2019).
-
Amador, C. I., Stannius, R. O., Røder, H. L. & Burmølle, M. High-throughput screening alternative to crystal Violet biofilm assay combining fluorescence quantification and imaging. J. Microbiol. Methods. 190, 4. https://doi.org/10.1016/j. mimet.2021.106343 (2021).
-
Loimaranta, V., Mazurel, D., Deng, D. & Söderling, E. Xylitol and erythritol inhibit real-time biofilm formation of Streptococcus mutans. BMC Microbiol. 20, 1–9. https://doi.org/10.1186/s12866-020-01867-8 (2020).
-
Tsang, S. T. J., Gwynne, P. J., Gallagher, M. P. & Simpson, A. H. R. W. The biofilm eradication activity of acetic acid in the management of periprosthetic joint infection. Bone Jt. Res. 7, 517–523. https://doi.org/10.1302/2046-3758.78 (2018).
-
Skerlavag, B. & Boix-Lemonche, G. The potential of surface-immobilized antimicrobial peptides for the enhancement of orthopaedic medical devices: A review. Antibiotics 12, 211. https://doi.org/10.3390/antibiotics12020211 (2023)
-
Trombetta, D. et al. Study on the mechanisms of the antibacterial action of some plant alpha,beta-unsaturated aldehydes. Lett. Appl. Microbiol. 35, 285–290. https://doi.org/10.1046/j.1472-765X.2002.01190.x (2002).
-
Juliana Screening of phyllosphere and endopythic microbes producing antibacterial or anti quorum sensing activity from Ageratum conyzoides, Coleus amboinicus, and Psidium guajava: An undergraduate thesis (Atma Jaya Catholic University of Indonesia, 2011)
-
Rizkinata, D., Kusnadi, V. C., Waturangi, D. E. & Yulandi, A. Isolation and molecular characterization of bacteriophages isolated from lake water and their application in foods against Bacillus cereus. BMC Res. Notes. 18, 364. https://doi.org/10.1186/s13104-025-07436-4 (2025).
-
Everly, V. & Waturangi, D. E. Metabolite from supernatant of soil and plant-associated bacteria control biofilm of fish pathogens. BMC Res. Notes. 17, 311. https://doi.org/10.1186/s13104-024-06974-7 (2024).
-
Gandasurya, G. & Waturangi, D. E. Supernatant of plant-associated bacteria potency against biofilms formed by foodborne pathogen and food spoilage bacteria. BMC Res. Notes. 17, 388. https://doi.org/10.1186/s13104-024-06997-0 (2024).
-
Hardi, E. H. et al. Identification of potentially pathogenic bacteria from tilapia (Oreochromis niloticus) and channel catfish (Clarias batrachus) culture in Samarinda, East Kalimantan, Indonesia. Biodiversitas. 19, 2. https://doi.org/10.13057/biodiv/190215 (2018).
-
Mulya, E. & Waturangi, D. E. Screening and quantification of anti-quorum sensing and antibiofilm activity of actinomycetes isolates against food spoilage biofilm-forming bacteria. BMC Microbiol. 21, 1. https://doi.org/10.1186/s12866-020-02060-7 (2021).
