Comparative evaluation of stability, efficacy, and sterility in five repackaged intravitreal anti-vascular endothelial growth factor medications

comparative-evaluation-of-stability,-efficacy,-and-sterility-in-five-repackaged-intravitreal-anti-vascular-endothelial-growth-factor-medications
Comparative evaluation of stability, efficacy, and sterility in five repackaged intravitreal anti-vascular endothelial growth factor medications

Data availability

All data generated and/or analyzed during this study are included in this published article (and its Supplementary Information files).

References

  1. Hang, A., Feldman, S., Amin, A. P., Ochoa, J. A. R. & Park, S. S. Intravitreal anti-vascular endothelial growth factor therapies for retinal disorders. Pharmaceuticals 16, 1140. https://doi.org/10.3390/ph16081140 (2023).

    Google Scholar 

  2. Dorrell, M., Uusitalo-Jarvinen, H., Aguilar, E. & Friedlander, M. Ocular neovascularization: basic mechanisms and therapeutic advances. Surv. Ophthalmol. 52, S3-S19. (2007) https://doi.org/10.1016/j.survophthal.2006.10.017

  3. Heloterä, H. & Kaarniranta, K. A linkage between angiogenesis and inflammation in neovascular age-related macular degeneration. Cells 11, 3453. https://doi.org/10.3390/cells11213453 (2022).

    Google Scholar 

  4. Tsai, A. S. et al. Assessment and management of retinopathy of prematurity in the era of anti-vascular endothelial growth factor (VEGF). Prog. Retin. Eye Res. 88, 101018. https://doi.org/10.1016/j.preteyeres.2021.101018 (2022).

    Google Scholar 

  5. Uludag, G. et al. Efficacy and safety of intravitreal anti-VEGF therapy in diabetic retinopathy: What we have learned and what should we learn further? Expert Opin. Biol. Ther. 22, 1275–1291. https://doi.org/10.1080/14712598.2022.2100694 (2022).

    Google Scholar 

  6. Imazeki, M. et al. Anti-VEGF therapy reduces inflammation in diabetic macular edema. Ophthalmic Res. 64, 43–49. https://doi.org/10.1159/000508953 (2021).

    Google Scholar 

  7. Ferro Desideri, L., Traverso, C. E., Nicolò, M. & Munk, M. R. Faricimab for the treatment of diabetic macular edema and neovascular age-related macular degeneration. Pharmaceutics 15, 1413. https://doi.org/10.3390/pharmaceutics15051413 (2023).

    Google Scholar 

  8. WellsJA, G. AyalaARDiabetic retinopathy clinical research network. Aflibercept, bevacizumab, or Ranibizumab for diabetic macular edema. N Engl. J. Med. 372, 1193–1203 (2015).

    Google Scholar 

  9. Solomon, S. D., Lindsley, K., Vedula, S. S., Krzystolik, M. G. & Hawkins, B. S. Anti-vascular endothelial growth factor for neovascular age‐related macular degeneration. Cochrane Database Syst. Reviews. https://doi.org/10.1002/14651858.CD005139.pub3 (2014).

    Google Scholar 

  10. Heier, J. S. et al. Ranibizumab for macular edema due to retinal vein occlusions: Long-term follow-up in the HORIZON trial. Ophthalmology 119, 802–809. https://doi.org/10.1016/j.ophtha.2011.12.005 (2012).

    Google Scholar 

  11. Baker-Schena, L. & Expensive (eds) drugs. EyeNet Magazine, 39–44 (2017).

  12. Brown, G. C., Brown, M. M., Rapuano, S. B. & Boyer, D. A cost-benefit analysis of VEGF-inhibitor therapy for neovascular age-related macular degeneration in the united States. Am. J. Ophthalmol. 223, 405–429. https://doi.org/10.1016/j.ajo.2020.07.010 (2021).

    Google Scholar 

  13. Sam-Oyerinde, O. A. & Patel, P. J. Real-world outcomes of anti-VEGF therapy in diabetic macular oedema: Barriers to treatment success and implications for low/lower-middle-income countries. Ophthalmol. Therapy. 12, 809–826. https://doi.org/10.1007/s40123-023-00672-6 (2023).

    Google Scholar 

  14. Juhong, J. et al. The sterility, stability and efficacy of repackaged ziv-aflibercept for intravitreal administration. Sci. Rep. 12, 2971. https://doi.org/10.1038/s41598-022-06831-2 (2022).

    Google Scholar 

  15. Cao, S., Cui, J., Matsubara, J. & Forooghian, F. Long-term in vitro functional stability of compounded Ranibizumab and Aflibercept. Can. J. Ophthalmol. 52, 273–276. https://doi.org/10.1016/j.jcjo.2016.11.012 (2017).

    Google Scholar 

  16. Parikh, R. et al. A multinational comparison of anti–vascular endothelial growth factor use: The United States, the United Kingdom, and Asia-Pacific. Ophthalmol. Retina. 3, 16–26. https://doi.org/10.1016/j.oret.2018.08.002 (2019).

    Google Scholar 

  17. Blom, K., Bragadóttir, R., Sivertsen, M. S., Moe, M. C. & Jørstad, Ø. K. Does pharmaceutical compounding of vascular endothelial growth factor inhibitors for intravitreal use alter the risk of post-injection endophthalmitis? Ocul. Immunol. Inflamm. 30, 713–716. https://doi.org/10.1080/09273948.2020.1820530 (2022).

    Google Scholar 

  18. Tatsumi, T. Current treatments for diabetic macular edema. Int. J. Mol. Sci. 24, 9591. https://doi.org/10.3390/ijms24119591 (2023).

    Google Scholar 

  19. Chen, Y. H. et al. Evaluation of the sterility, stability, and efficacy of bevacizumab stored in multiple-dose vials for 6 months. J. Ocul. Pharmacol. Ther. 25, 65–70. https://doi.org/10.1089/jop.2008.0043 (2009).

    Google Scholar 

  20. Khalili, H., Sharma, G., Froome, A., Khaw, P. T. & Brocchini, S. Storage stability of bevacizumab in polycarbonate and polypropylene syringes. Eye 29, 820–827. https://doi.org/10.1038/eye.2015.28 (2015).

    Google Scholar 

  21. Gjølberg, T. T. et al. A silicone oil-free syringe tailored for intravitreal injection of biologics. Front. Ophthalmol. 2, 882013. https://doi.org/10.3389/fopht.2022.882013 (2022).

    Google Scholar 

  22. Sivertsen, M. S. et al. Pharmaceutical compounding of Aflibercept in prefilled syringes does not affect structural integrity, stability or VEGF and Fc binding properties. Sci. Rep. 8, 2101. https://doi.org/10.1038/s41598-018-20525-8 (2018).

    Google Scholar 

  23. de Farah, L. Evaluation of Aflibercept and ziv-aflibercept binding affinity to vascular endothelial growth factor, stability and sterility after compounding. Int. J. Retina Vitreous. 4, 1–7. https://doi.org/10.1186/s40942-018-0143-x (2018).

    Google Scholar 

  24. Jørstad, Ø. K. et al. Pharmaceutical compounding and storage of faricimab in a syringe for intravitreal injection do not impair stability and bi-specific binding properties. Int. J. Retina Vitreous. 9, 65. https://doi.org/10.1186/s40942-023-00507-3 (2023).

    Google Scholar 

  25. Taschauer, A. et al. Faricimab maintains substance integrity and sterility after compounding and storage in two different polypropylene syringe types. Eye https://doi.org/10.1038/s41433-024-03511-5 (2024).

  26. Gaudy, A. Jr, Abu-Niaaj, F. & Gaudy, E. Statistical study of the spot-plate technique for viable-cell counts. Appl. Microbiol. 11, 305–309. https://doi.org/10.1128/am.11.4.305-309.1963 (1963).

    Google Scholar 

  27. Convention, U. S. P. USP General Chapter < 71>, Sterility tests, (2016). https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q11_pf_ira_34_6_2008.pdf

  28. Convention, U. S. P. USP General Chapter < 62>, Microbiological examination of nonsterile products: tests for specified microorganisms (2016). https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q05b_pf_ira_34_6_2008.pdf

  29. Yannuzzi, N. A. et al. Evaluation of compounded bevacizumab prepared for intravitreal injection. JAMA Ophthalmol. 133, 32–39. https://doi.org/10.1001/jamaophthalmol.2014.3591 (2015).

    Google Scholar 

  30. Örnek, K., Karahan, Z. C., Ergin, A., Tekeli, A. & Tekeli, O. Bevacizumab sterility in multiple doses from a single-use vial. Ann. Pharmacother. 42, 1425–1428. https://doi.org/10.1345/aph.1L270 (2008).

    Google Scholar 

  31. Moreno, M. et al. Study of stability and biophysical characterization of Ranibizumab and Aflibercept. Eur. J. Pharm. Biopharm. 108, 156–167. https://doi.org/10.1016/j.ejpb.2016.09.003 (2016).

    Google Scholar 

  32. Palmer, J., Amoaku, W. & Kamali, F. Quality of bevacizumab compounded for intravitreal administration. Eye 27, 1090–1097. https://doi.org/10.1038/eye.2013.139 (2013).

    Google Scholar 

  33. Das, T. et al. Safety, sterility and stability of direct-from‐vial multiple dosing intravitreal injection of bevacizumab. Clin. Exp. Ophthalmol. 43, 466–473. https://doi.org/10.1111/ceo.12489 (2015).

    Google Scholar 

  34. Murray, P. R., Baron, E. J., Jorgensen, J. H. & Landry, M. L. Manual of clinical microbiology (Amer society for microbiology) (2007).

  35. Chang, D. P. et al. Long-term stability of anti-vascular endothelial growth factor (a-VEGF) biologics under physiologically relevant conditions and its impact on the development of long-acting delivery systems. J. Pharm. Sci. 110, 860–870 (2021).

    Google Scholar 

  36. Convention, U. S. P. USP General Chapter < 795>, Pharmaceutical compounding – nonsterile preparations, (2024). https://www.usp.org/compounding/general-chapter-795

  37. Convention, U. S. P. USP General Chapter < 797>, Pharmaceutical compounding – sterile preparations, (2024). https://www.usp.org/compounding/general-chapter-797

  38. Gasteiger, E. et al. Protein identification and analysis tools on the expasy server. Proteom. Protocols Handb. https://doi.org/10.1385/1-59259-890 (2005).

Download references

Acknowledgements

We thank the staff from the Pharmacy Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University for their kind assistance during pharmaceutical compounding and storage of the intravitreal anti-VEGF drugs. We would like to acknowledge Narupat Hongdilokkul for the Superdex 200 Increase 10/300 GL column used in the SEC experiments. This research is supported in part by IPS grants from the Faculty of Science, Mahidol University (to Danaya Pakotiprapha and Sittinan Chanarat), and by the mid-career researcher grant from National Research Council of Thailand (NRCT) and Mahidol University (N42A670557) (to Varodom Charoensawan). The sponsors or funding organization had no role in the design or conduct of this research.

Funding

Declarations.

This research is supported in part by IPS grants from the Faculty of Science, Mahidol University (to Danaya Pakotiprapha and Sittinan Chanarat), and by the mid-career researcher grant from National Research Council of Thailand (NRCT) and Mahidol University (N42A670557) (to Varodom Charoensawan). The sponsors or funding organization had no role in the design or conduct of this research.

Author information

Author notes

  1. Panintorn Thunwiriya, Tanaporn Phetruen, Phaewa Chaiwijit these three are co-first authors and they contributed equally to thiswork.

    Varodom Charoensawan, Sittinan Chanarat, Danaya Pakotiprapha and Prut Hanutsaha have contributed equally to this work.

Authors and Affiliations

  1. School of Ophthalmology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand

    Panintorn Thunwiriya

  2. Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand

    Tanaporn Phetruen, Sittinan Chanarat & Danaya Pakotiprapha

  3. Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand

    Tanaporn Phetruen, Varodom Charoensawan, Sittinan Chanarat & Danaya Pakotiprapha

  4. Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

    Phaewa Chaiwijit & Varodom Charoensawan

  5. Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

    Phaewa Chaiwijit & Varodom Charoensawan

  6. Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

    Phaewa Chaiwijit & Varodom Charoensawan

  7. Department of Ophthalmology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

    Chaiyawat Tonawannakorn & Prut Hanutsaha

  8. Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand

    Kanokwan Dekham

  9. Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand

    Nalumon Thadtapong

  10. Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand

    Soraya Chaturongakul

  11. School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand

    Varodom Charoensawan

Authors

  1. Panintorn Thunwiriya
  2. Tanaporn Phetruen
  3. Phaewa Chaiwijit
  4. Chaiyawat Tonawannakorn
  5. Kanokwan Dekham
  6. Nalumon Thadtapong
  7. Soraya Chaturongakul
  8. Varodom Charoensawan
  9. Sittinan Chanarat
  10. Danaya Pakotiprapha
  11. Prut Hanutsaha

Contributions

Conceptualization: PT, VC, SChanarat, DP, PHMethodology: PT, SChaturongakul, VC, SChanarat, DP, PHValidation: TP, PC, KD, NTFormal analysis: TP, PC, KD, NTInvestigation: PT, SChaturongakul, VC, SChanarat, DP, PHResources: CT, SChaturongakul, SChanarat, DP, PHWriting – Original Draft: PT, TP, PC, VC, SChanarat, DPWriting – Review & Editing: All authorsVisualization: TP, PC, KD, NTSupervision: PT, SChaturongakul, VC, SChanarat, DP, PH.

Corresponding authors

Correspondence to Panintorn Thunwiriya, Varodom Charoensawan, Sittinan Chanarat, Danaya Pakotiprapha or Prut Hanutsaha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work, the authors used ChatGPT and Google Gemini, exclusively to improve readability and for grammar check. After using these tools, the authors reviewed and edited the content as needed and took full responsibility for the content of the publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thunwiriya, P., Phetruen, T., Chaiwijit, P. et al. Comparative evaluation of stability, efficacy, and sterility in five repackaged intravitreal anti-vascular endothelial growth factor medications. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-026-39102-5

Keywords