Comparative genomic and phylogenetic analyses of the mitogenome of Graptopetalum Paraguayense (N. E. Br.) Walth. 1938

comparative-genomic-and-phylogenetic-analyses-of-the-mitogenome-of-graptopetalum-paraguayense-(n-e-br)-walth.-1938
Comparative genomic and phylogenetic analyses of the mitogenome of Graptopetalum Paraguayense (N. E. Br.) Walth. 1938

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

Abstract

Graptopetalum paraguayense is a perennial succulent plant with ornamental, ecological, and medicinal value. Here, we present the first complete mitogenome of G. paraguayense, assembled as a circular molecule of 242,059 bp with a GC content of 43.65%. The genome contains 50 genes, including 31 protein-coding genes (PCGs), 13 tRNAs, 3 rRNAs, and 3 pseudogenes. A total of 599 RNA editing sites were identified, with a predominant effect of altering amino acid hydrophobicity (47.41% were hydrophilic-to-hydrophobic conversions). Codon usage bias analysis revealed a preference for GCU (Ala), CGA (Arg), and UUA (Leu), with the stop codon UAA exhibiting the highest RSCU value (1.94). A total of 122 repetitive sequences were identified, comprising 59 simple sequence repeats (SSRs), 1 tandem repeat, and 62 dispersed repeats. Evolutionary analysis indicated positive selection on ccmB and nad7 genes, while the majority of PCGs were under purifying selection. The mitogenome of G. paraguayense shared 57.28% sequence similarity with that of Sedum plumbizincicola. We also found evidence of chloroplast-to-mitochondrial DNA transfer, involving genes such as psaC, ndhE, ndhG, ndhI, ndhA, and ndhH. Comparative analyses identified eleven divergent hotspot regions: atp9, atp8, rpl5, cox2, ccmFn, rps7, ccmC, ccmFc, mttB, nad6, and rps13. Phylogenetic analysis confirmed the placement of G. paraguayense within the Acre clade of Crassulaceae, showing a sister relationship with S. plumbizincicola. Our study not only provides the first mitochondrial genomic resource for G. paraguayense but also reveals potential adaptive evolution through positive selection and interorganellar gene transfer, offering new perspectives on mitogenome plasticity in succulent plants.

Data availability

The data is available at NCBI accession: PV256627.

References

  1. Jaiswal, V. & Lee, H. J. A Comprehensive Review on Graptopetalum paraguayense’s Phytochemical Profiles, Pharmacological Activities, and Development as a Functional Food. Plants (Basel). 14 https://doi.org/10.3390/plants14030349 (2025).

  2. Chen, Y. X. et al. Graptopetalum Paraguayense extract ameliorates proteotoxicity in aging and Age-Related diseases in model systems. Nutrients 13 https://doi.org/10.3390/nu13124317 (2021).

  3. Messerschmid, T. F. E., Klein, J. T., Kadereit, G. & Kadereit, J. W. Linnaeus’s folly – phylogeny, evolution and classification of sedum (Crassulaceae) and crassulaceae subfamily sempervivoideae. Taxon 69, 892–926. https://doi.org/10.1002/tax.12316 (2020).

    Google Scholar 

  4. Acevedo-Rosas, R., Cameron, K., Sosa, V. & Pell, S. A molecular phylogenetic study of graptopetalum (Crassulaceae) based on ETS, ITS, RPL16, and TRNL-F nucleotide sequences. Am. J. Bot. 91, 1099–1104. https://doi.org/10.3732/ajb.91.7.1099 (2004).

    Google Scholar 

  5. Chen, X. J. & Butow, R. A. The organization and inheritance of the mitochondrial genome. Nat. Rev. Genet. 6, 815–825. https://doi.org/10.1038/nrg1708 (2005).

    Google Scholar 

  6. Ding, H. et al. The mitogenome of sedum Plumbizincicola (Crassulaceae): insights into RNA Editing, lateral gene Transfer, and phylogenetic implications. Biology (Basel). 11. https://doi.org/10.3390/biology11111661 (2022).

  7. Logan, D. C. The mitochondrial compartment. Journal of Experimental Botany.  57 1225–1243 (2006). https://doi.org:10.1093/jxb/erj151%J Journal of Experimental Botany.

  8. Møller, I. M., Rasmusson, A. G. & Van Aken, O. Plant mitochondria – past, present and future. Plant J. 108, 912–959. https://doi.org/10.1111/tpj.15495 (2021).

    Google Scholar 

  9. Štorchová, H. & Krüger, M. Methods for assembling complex mitochondrial genomes in land plants. Journal of Experimental Botany.  75 5169–5174 (2024). https://doi.org/10.1093/jxb/erae034%J Journal of Experimental Botany.

  10. Khosravi, S. & Harner, M. E. The MICOS complex, a structural element of mitochondria with versatile functions. 401, 765–778 (2020). https://doi.org/10.1515/hsz-2020-0103

  11. Arimura, S. & Nakazato, I. Genome editing of plant mitochondrial and Chloroplast genomes. Plant Cell Physiol. 65, 477–483. https://doi.org/10.1093/pcp/pcad162 (2023). %J Plant and Cell Physiology.

    Google Scholar 

  12. Li, J. et al. Complete mitochondrial genome assembly and comparison of camellia sinensis var. Assamica cv. Duntsa. Front. Plant Sci. 14 https://doi.org/10.3389/fpls.2023.1117002 (2023).

  13. Yu, X. et al. Comparative analysis of the organelle genomes of three Rhodiola species provide insights into their structural dynamics and sequence divergences. BMC Plant. Biol. 23, 156. https://doi.org/10.1186/s12870-023-04159-1 (2023).

    Google Scholar 

  14. Chan, P. P. & Lowe, T. M. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962, 1–14. https://doi.org/10.1007/978-1-4939-9173-0_1 (2019).

    Google Scholar 

  15. Mower, J. P. PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinform. 6, 96. https://doi.org/10.1186/1471-2105-6-96 (2005).

    Google Scholar 

  16. Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: a web server for microsatellite prediction. Bioinformatics.  33 2583–2585 (2017). https://doi.org/10.1093/nar/27.2.573%J Bioinformatics.

  17. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research. 27 573–580 (1999). https://doi.org/10.1093/nar/27.2.573%J Nucleic Acids Research.

  18. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645. https://doi.org/10.1101/gr.092759.109 (2009).

    Google Scholar 

  19. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution. 30 772–780 (2013). https://doi.org/10.1093/molbev/mst010%J Molecular Biology and Evolution.

  20. Wang, D., Zhang, Y., Zhang, Z., Zhu, J. & Yu, J. KaKs_Calculator 2.0: A toolkit incorporating Gamma-Series methods and sliding window strategies. Genom. Proteom. Bioinform. 8, 77–80. https://doi.org/10.1016/S1672-0229 (2010). (10)60008-3%J Genomics, Proteomics & Bioinformatics

    Google Scholar 

  21. Darling, A. E. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14 https://doi.org/10.1371/journal.pcbi.1005944 (2018).

  22. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). https://doi.org/10.1093/bioinformatics/btp348%J Bioinformatics.

  23. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014). %J Bioinformatics.

    Google Scholar 

  24. Andrieux, P., Chevillard, C., Cunha-Neto, E. & Nunes, J. P. S. Mitochondria as a cellular hub in infection and inflammation. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms222111338 (2021).

  25. Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159. https://doi.org/10.1016/j.cell.2012.02.035 (2012).

    Google Scholar 

  26. Hajnóczky, G., Davies, E. & Madesh, M. Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun. 304, 445–454. https://doi.org/10.1016/S0006-291X(03)00616-8 (2003). https://doi.org:.

    Google Scholar 

  27. Grassa, C. J., Ebert, D. P., Kane, N. C. & Rieseberg, L. H. Complete mitochondrial genome sequence of sunflower (Helianthus annuus L). Genome Announc. 4 https://doi.org/10.1128/genomeA.00981-16 (2016).

  28. Livnat, A. & Love, A. C. Mutation and evolution: Conceptual possibilities. Bioessays 46, e2300025 (2024). https://doi.org/10.1002/bies.202300025

  29. Zhang, X. et al. Comparative genomic and phylogenetic analyses of mitochondrial genomes of Hawthorn (Crataegus spp.) in Northeast China. Int. J. Biol. Macromol. 272, 132795. https://doi.org/10.1016/j.ijbiomac.2024.132795 (2024). https://doi.org:.

    Google Scholar 

  30. Wang, Z. et al. Comparative analysis of mitochondrial genomes of invasive weed Mikania Micrantha and its Indigenous congener Mikania cordata. Int. J. Biol. Macromol. 281, 136357. https://doi.org/10.1016/j.ijbiomac.2024.136357 (2024). https://doi.org:.

    Google Scholar 

  31. Zhou, P., Zhang, Q., Li, F., Huang, J. & Zhang, M. Assembly and comparative analysis of the complete mitochondrial genome of ilex metabaptista (Aquifoliaceae), a Chinese endemic species with a narrow distribution. BMC Plant Biol. 23, 393. https://doi.org/10.1186/s12870-023-04377-7 (2023).

    Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation from Jiangsu Province (No. BK20211128) and the project of innovative entrepreneurship training for college students in Jiangsu province (No. 202313843019Y, No. 202313843009Y and No. S202513843029).

Author information

Authors and Affiliations

  1. School of Chemistry and Biological Engineering, NanJing Normal University TaiZhou College, TaiZhou, 225300, China

    Xue Zhou, Chuqi Lin, Zhirui Li, Lin Zhou & Xi Du

  2. Fisheries College, Jimei University, Xiamen, 361021, China

    Chuqi Lin

  3. College of Biological Science and Technology of Yangzhou University, Yangzhou, 225009, China

    Qingming Ren & Fei Xiong

Authors

  1. Xue Zhou
  2. Qingming Ren
  3. Chuqi Lin
  4. Zhirui Li
  5. Lin Zhou
  6. Fei Xiong
  7. Xi Du

Contributions

Xue Zhou: Data curation, Formal analysis, Funding acquisition, Investigation, Writing –original draft, Writing–review&editing. Qingming Ren: Data curation, Formal analysis, Investigation, Writing–review&editing. ChuQi Lin: Data curation, Formal analysis, Writing–original draft, Methodology. ZhiRui Li: Data curation, Writing–original draft, Methodology. Lin Zhou:Methodology. Fei Xiong: supervised the project and revised the manuscript. Xi Du: supervised the project and revised the manuscript.

Corresponding author

Correspondence to Xi Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Ren, Q., Lin, C. et al. Comparative genomic and phylogenetic analyses of the mitogenome of Graptopetalum Paraguayense (N. E. Br.) Walth. 1938. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-34236-4

Keywords