Comparative tolerance and phytoremediation potential of four Lagerstroemia indica cultivars under cadmium stress

comparative-tolerance-and-phytoremediation-potential-of-four-lagerstroemia-indica-cultivars-under-cadmium-stress
Comparative tolerance and phytoremediation potential of four Lagerstroemia indica cultivars under cadmium stress

References

  1. Guo, H. et al. Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum. Ecotoxicol. Environ. Saf. 195, 110502. https://doi.org/10.1016/j.ecoenv.2020.110502 (2020).

    Google Scholar 

  2. Zhang, K. et al. Screening of peanut cultivars with low-cadmium accumulation assisted by cadmium resistance: promoting safe utilization of cadmium contaminated soils. Appl. Soil. Ecol. 193, 105109. https://doi.org/10.1016/j.apsoil.2023.105109 (2024).

    Google Scholar 

  3. Haider, F. U. et al. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol. Environ. Saf. 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887 (2021).

    Google Scholar 

  4. Zhang, R. et al. Nitrogen/Phosphorus ratio affected the growth of an invasive plant Alternanthera Philoxeroides under cadmium stress. Phyton-Int J. Exp. Bot. 94 https://doi.org/10.32604/phyton.2025.062281 (2025).

  5. Wang, Y. et al. Cadmium accumulation and tolerance of Lagerstroemia indica and Lagerstroemia Fauriei (Lythraceae) seedlings for phytoremediation applications. Int. J. Phytorem. 18, 1104–1112. https://doi.org/10.1080/15226514.2016.1183581 (2016).

    Google Scholar 

  6. Liao, Q. L. et al. Association of soil cadmium contamination with ceramic industry: a case study in a Chinese town. Sci. Total Environ. 514, 26–32. https://doi.org/10.1016/j.scitotenv.2015.01.084 (2015).

    Google Scholar 

  7. Jiang, C., Cui, S., Feng, Q. & Sun, X. Advances in cd remediation techniques for contaminated soils. IOP Conf. Ser. Earth Environ. Sci. 621, 012129. https://doi.org/10.1088/1755-1315/621/1/012129 (2021).

    Google Scholar 

  8. Elhakem, H. A. Alleviating cadmium toxicity in maize plants: role of Glycine betaine in enhancing growth, photosynthetic efficiency, water status, and antioxidant defense mechanism. Plant. Soil. Environ. 70, 617–631. https://doi.org/10.17221/66/2024-PSE (2024).

    Google Scholar 

  9. Gallego, S. M. et al. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006 (2012).

    Google Scholar 

  10. Das, S., Goswami, S. & Das Talukdar, A. Physiological responses of water hyacinth, Eichhornia crassipes (Mart.) Solms, to cadmium and its phytoremediation potential. Turk. J. Biol. 40, 84–94. https://doi.org/10.3906/biy-1411-86 (2016).

    Google Scholar 

  11. Khan, I. Z. et al. Assessment of cadmium toxicity in buffaloes grazing on forages cultivated in diverse irrigated soils: a comprehensive analysis. Plant. Soil. Environ. 71, 202–212. https://doi.org/10.17221/42/2025-PSE (2025).

    Google Scholar 

  12. Luo, J. S. & Zhang, Z. Mechanisms of cadmium phytoremediation and detoxification in plants. Crop J. 9, 521–529. https://doi.org/10.1016/j.cj.2021.02.001 (2021).

    Google Scholar 

  13. Zhang, X. et al. The Uptake, Transfer, and detoxification of cadmium in plants and its exogenous effects. Cells. 13(11), 907. https://doi.org/10.3390/cells13110907 (2024).

    Google Scholar 

  14. Tao, J. & Lu, L. Advances in Genes-Encoding transporters for cadmium Uptake, Translocation, and accumulation in plants. Toxics. 10(8), 411. https://doi.org/10.3390/toxics10080411 (2022).

    Google Scholar 

  15. Hu, Y. et al. Cadmium toxicity in plants: from transport to tolerance mechanisms. Plant. Signal. Behav. 20(1), 2544316. https://doi.org/10.1080/15592324.2025.2544316 (2025).

    Google Scholar 

  16. Song, X. et al. High cadmium-accumulating Salix ecotype shapes rhizosphere Microbiome to facilitate cadmium extraction. Environ. Int. 190, 108904. https://doi.org/10.1016/j.envint.2024.108904 (2024).

    Google Scholar 

  17. Mukherjee, S. et al. Sustainable management of post-phytoremediation biomass. Energy Ecol. Environ. 10, 675–709. https://doi.org/10.1007/s40974-025-00364-w (2025).

    Google Scholar 

  18. Zhang, S. et al. Effects of malic acid on cadmium uptake and translocation and essential element accumulation in rice. Toxics. 13(10), 811. https://doi.org/10.3390/toxics13100811 (2025).

    Google Scholar 

  19. Zhuang, X. et al. Characteristics of cadmium accumulation and tolerance in Apple plants grown in different soils. Front. Plant. Sci. 14, 1188241. https://doi.org/10.3389/fpls.2023.1188241 (2023).

    Google Scholar 

  20. Shah, N. et al. The deteriorating effects of cadmium accumulation on the yield and quality of maize crops. South. Afr. J. Bot. 160, 732–738. https://doi.org/10.1016/j.sajb.2023.07.050 (2023).

    Google Scholar 

  21. Luo, P. et al. An overview of the mechanisms through which plants regulate ROS homeostasis under cadmium stress. Antioxidants. 13(10), 1174. https://doi.org/10.3390/antiox13101174 (2024).

    Google Scholar 

  22. Al-Khayri, J. M. et al. Cadmium toxicity in medicinal plants: an overview of the tolerance strategies, biotechnological and omics approaches to alleviate metal stress. Front. Plant. Sci. 13, 1047410. https://doi.org/10.3389/fpls.2022.1047410 (2023).

    Google Scholar 

  23. Bellini, E. et al. Glutathione and phytochelatins jointly allow intracellular and extracellular detoxification of cadmium in the liverwort Marchantia polymorpha. Environ. Exp. Bot. 209, 105303. https://doi.org/10.1016/j.envexpbot.2023.105303 (2023).

    Google Scholar 

  24. Raza, A. et al. Phytoremediation of cadmium: Physiological, Biochemical, and molecular mechanisms. Biology9(7), 117. https://doi.org/10.3390/biology9070177 (2020).

    Google Scholar 

  25. Galvis, D. A., Jaimes-Suárez, Y. Y., Molina, R., Ruiz, J., Carvalho, F. E. L. & R. & Cadmium uptaking and allocation in wood species associated to Cacao agroforestry systems and its potential role for phytoextraction. Plants. 12(16), 2930. https://doi.org/10.3390/plants12162930 (2023).

    Google Scholar 

  26. Chen, L. et al. Comparative study of metal resistance and accumulation of lead and zinc in two poplars. Physiol. Plant. 151, 390–405. https://doi.org/10.1111/ppl.12120 (2014).

    Google Scholar 

  27. Yan, A. et al. Phytoremediation: A promising approach for revegetation of heavy Metal-Polluted land. Front. Plant. Sci. 11, 359. https://doi.org/10.3389/fpls.2020.00359 (2020).

    Google Scholar 

  28. Bhat, B. A. et al. Plant hyperaccumulators: a state-of-the-art review on mechanism of heavy metal transport and sequestration. Front. Plant. Sci. 16, 1631378. https://doi.org/10.3389/fpls.2025.1631378 (2025).

    Google Scholar 

  29. Li, Y. et al. SpSIZ1 from hyperaccumulator Sedum Plumbizincicola orchestrates SpABI5 to fine-tune cadmium tolerance. Front. Plant. Sci. 15. 1382121. https://doi.org/10.3389/fpls.2024.1382121 (2024).

    Google Scholar 

  30. Dai, H., Wei, S., Twardowska, I., Hou, N. & Zhang, Q. Cosmopolitan cadmium hyperaccumulator Solanum nigrum: exploring cadmium uptake, transport and physiological mechanisms of accumulation in different ecotypes as a way of enhancing its hyperaccumulative capacity. J. Environ. Manag. 320, 115878. https://doi.org/10.1016/j.jenvman.2022.115878 (2022).

    Google Scholar 

  31. Feng, Y. et al. Ectopic expression of SaNRAMP3 from Sedum Alfredii enhanced cadmium root-to-shoot transport in Brassica juncea. Ecotoxicol. Environ. Saf. 156, 279–286. https://doi.org/10.1016/j.ecoenv.2018.03.031 (2018).

    Google Scholar 

  32. Huang, Z. et al. Biochar immobilized Proteus mirabilis Ch8 to enhance the cd phytoremediation potential of Woody plant Robinia Pseudoacacia L. J. Environ. Manag. 377, 124620. https://doi.org/10.1016/j.jenvman.2025.124620 (2025).

    Google Scholar 

  33. Zhai, F. et al. Effects of silicon on the transport, subcellular distribution, and chemical forms of lead in Salix viminalis L. Plant. Soil. Environ. 71, 249–258. https://doi.org/10.17221/8/2025-PSE (2025).

    Google Scholar 

  34. Zhao, H. et al. Effects of cadmium stress on growth and physiological characteristics of Sassafras seedlings. Sci. Rep. 11, 9913. https://doi.org/10.1038/s41598-021-89322-0 (2021).

    Google Scholar 

  35. Jia, Y. et al. Mechanisms of cadmium tolerance and detoxification in two ornamental plants. Agronomy. 13(8), 2039. https://doi.org/10.3390/agronomy13082039 (2023).

    Google Scholar 

  36. Kovačević, B. et al. Interclonal variation in heavy metal accumulation among Poplar and Willow clones: implications for phytoremediation of contaminated landfill soils. Plants. 14(4), 567. https://doi.org/10.3390/plants14040567 (2025).

    Google Scholar 

  37. Landberg, T. & Greger, M. Phytoremediation using Willow in industrial contaminated soil. Sustainability 14, 8449. https://doi.org/10.3390/su14148449 (2022).

    Google Scholar 

  38. Yu, M. et al. Molecular insights into lignin biosynthesis on cadmium tolerance: Morphology, transcriptome and proteome profiling in Salix Matsudana. J. Hazard. Mater. 41, 129909. https://doi.org/10.1016/j.jhazmat.2022.129909 (2022).

    Google Scholar 

  39. Bravo, M. A. et al. Variation in root system architecture and lead accumulation in Sweetpotato (Ipomoea Batatas L.) cultivars Bayou Belle and Beauregard. HortScience 60, 871–877. https://doi.org/10.21273/HORTSCI18492-25 (2025).

    Google Scholar 

  40. Wang, J. et al. Conjoint analysis of physio-biochemical, transcriptomic, and metabolomic reveals the response characteristics of Solanum nigrum L. to cadmium stress. BMC Plant. Biol. 24, 567. https://doi.org/10.1186/s12870-024-05278-z (2024).

    Google Scholar 

  41. Wu, M. et al. Physiological and biochemical mechanisms preventing cd toxicity in the new hyperaccumulator Abelmoschus manihot. J. Plant. Growth Regul. 37, 709–718. https://doi.org/10.1007/s00344-017-9765-8 (2018).

    Google Scholar 

  42. Samreen, S., Khan, A. A., Khan, M. R., Ansari, S. A. & Khan, A. Assessment of phytoremediation potential of seven weed plants growing in Chromium- and Nickel-Contaminated soil. Water Air Soil. Pollut. 232, 209. https://doi.org/10.1007/s11270-021-05124-0 (2021).

    Google Scholar 

  43. Chen, H., Zhao, H. & Zhao, B. Exploring the remediation potential of hydrangea macrophylla (Thunb.) Ser. In cadmium-contaminated soil by comparing cultivars and seedling age. Environ. Technol. Innov. 33, 103474. https://doi.org/10.1016/j.eti.2023.103474 (2024).

    Google Scholar 

  44. Wu, J., Qian, C., Liu, Z. & Zhong, X. Phytoremediation potential of hybrid Pennisetum in cadmium-contaminated soil and its physiological responses to cadmium. Environ. Sci. Pollut Res. 30, 26208–26217. https://doi.org/10.1007/s11356-022-23848-2 (2023).

    Google Scholar 

  45. Zafar-ul-Hye, M. et al. Effect of cadmium-Tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants. 9, 1386. https://doi.org/10.3390/plants9101386 (2020).

    Google Scholar 

  46. Carvalho, M. E. A., Castro, P. R. C. & Azevedo, R. A. Hormesis in plants under cd exposure: from toxic to beneficial element? J. Hazard. Mater. 384, 1–9. https://doi.org/10.1016/j.jhazmat.2019.121434 (2019).

    Google Scholar 

  47. Fan, D. et al. The role of the ABF1 gene in regulation of Cd-induced hormesis in Arabidopsis Thaliana. J. Hazard. Mater. 458, 131991. https://doi.org/10.1016/j.jhazmat.2023.131991 (2023).

    Google Scholar 

  48. Jalal, A. et al. Hormesis in plants: physiological and biochemical responses. Ecotoxicol. Environ. Saf. 207, 111225. https://doi.org/10.1016/j.ecoenv.2020.111225 (2020).

    Google Scholar 

  49. Jiao, Q. et al. Transcriptomic and ultrastructural insights into zinc-induced hormesis in wheat seedlings: Glutathione-mediated antioxidant defense in zinc toxicity regulation. Plant. Stress. 16,100820. https://doi.org/10.1016/j.stress.2025.100820 (2025).

    Google Scholar 

  50. Seth, C. S., Kumar Chaturvedi, P. & Misra, V. The role of phytochelatins and antioxidants in tolerance to cd accumulation in Brassica juncea L. Ecotoxicol. Environ. Saf. 71, 76–85. https://doi.org/10.1016/j.ecoenv.2007.10.030 (2008).

    Google Scholar 

  51. Jia, L. et al. Hormesis effects induced by cadmium on growth and photosynthetic performance in a Hyperaccumulator, Lonicera Japonica thunb. J. Plant. Growth Regul. 34, 13–21. https://doi.org/10.1007/s00344-014-9433-1 (2015).

    Google Scholar 

  52. Jia, L. et al. Hormesis phenomena under cd stress in a hyperaccumulator–Lonicera Japonica thunb. Ecotoxicology 22, 476–485. https://doi.org/10.1007/s10646-013-1041-5 (2013).

    Google Scholar 

  53. Zheng, G., Zhang, J., Liu, Y., Han, S. & Li, P. Significance of glutathione in the hormesis effect: a case study of the relationship between heavy metal cd and monitoring plant Tillandsia Ionantha. Plant. Physiol. Biochem. 227, 110130. https://doi.org/10.1016/j.plaphy.2025.110130 (2025).

    Google Scholar 

  54. Ci, D. et al. Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiol. Plant. 34, 191–202. https://doi.org/10.1007/s11738-011-0818-5 (2011).

    Google Scholar 

  55. Zhang, F., Liu, M., Li, Y., Che, Y. & Xiao, Y. Effects of arbuscular mycorrhizal fungi, Biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 655, 1150–1158. https://doi.org/10.1016/j.scitotenv.2018.11.317 (2019).

    Google Scholar 

  56. Sabella, E. et al. Effects of cadmium on root Morpho-Physiology of durum wheat. Front. Plant. Sci. 13, 936020. https://doi.org/10.3389/fpls.2022.936020 (2022).

    Google Scholar 

  57. Romdhane, L. et al. Root characteristics and metal uptake of maize (Zea Mays L.) under extreme soil contamination. Agronomy. 11, 010178. https://doi.org/10.3390/agronomy11010178 (2021).

    Google Scholar 

  58. Poschenrieder, C., Cabot, C., Martos, S., Gallego, B. & Barceló, J. Do toxic ions induce hormesis in plants? Plant. Sci. 212, 15–25. https://doi.org/10.1016/j.plantsci.2013.07.012 (2013).

    Google Scholar 

  59. Moeen-ud-din, M., Yang, S. & Wang, J. Auxin homeostasis in plant responses to heavy metal stress. Plant. Physiol. Biochem. 205, 108210. https://doi.org/10.1016/j.plaphy.2023.108210 (2023).

    Google Scholar 

  60. Li, S. et al. Auxin is involved in cadmium accumulation in rice through controlling nitric oxide production and the ability of cell walls to bind cadmium. Sci. Total Environ. 904, 166644. https://doi.org/10.1016/j.scitotenv.2023.166644 (2023).

    Google Scholar 

  61. Guo, Y. et al. A phytoremediation efficiency assessment of cadmium (Cd)-Contaminated soils in the three Gorges reservoir Area, China. Plants 14, 2202. https://doi.org/10.3390/plants14142202 (2025).

    Google Scholar 

  62. Yang, L. et al. High iron supply enhances cadmium accumulation in the aerial tissues by remodeling the root cell walls in Populus Cathayana. Ind. Crops Prod. 228, 10875. https://doi.org/10.1016/j.indcrop.2025.120875 (2025).

    Google Scholar 

  63. Ye, L. et al. Plant sex influences cadmium detoxification via mediating cadmium transport and cell wall modification under different nitrogen forms. Plant. Cell. Environ. 48(10), 7517–7532. https://doi.org/10.1111/pce.70050 (2025).

    Google Scholar 

  64. Deepika, N. & Haritash, A. K. Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: a critical review. Hortic. Environ. Biotech. 64, 709–734. https://doi.org/10.1007/s13580-023-00518-x (2023).

    Google Scholar 

  65. Marabesi, A. O., Nambeesan, S. U., Van Iersel, M. W., Lessl, J. T. & Coolong, T. W. J. F. i. P. S. Cadmium exposure is associated with increased transcript abundance of multiple heavy metal associated transporter genes in roots of hemp (Cannabis sativa L). Front. Plant. Sci. 14, 1183249. https://doi.org/10.3389/fpls.2023.1183249 (2023).

    Google Scholar 

  66. Hu, Y. et al. Exogenous silicon promotes cadmium (Cd) accumulation in Sedum Alfredii hance by enhancing cd uptake and alleviating cd toxicity. Front. Plant. Sci. 14, 1134370. https://doi.org/10.3389/fpls.2023.1134370 (2023).

    Google Scholar 

  67. Qadir, M. et al. Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere. 258, 127386. https://doi.org/10.1016/j.chemosphere.2020.127386 (2020).

    Google Scholar 

  68. Shah, N. et al. Enhancement of cadmium phytoremediation potential of Helianthus annus L. with application of EDTA and IAA. Metabolites. 12, 1049. https://doi.org/10.3390/metabo12111049 (2022).

    Google Scholar 

  69. Jiang, Y., Huang, R., Jiang, L., Chen, K. & Zhu, W. Alleviation of cadmium toxicity to Medicago truncatula by AMF involves the changes of cd speciation in rhizosphere soil and subcellular distribution. Phyton-Int J. Exp. Bot. 90 https://doi.org/10.32604/phyton.2021.014376 (2021).

  70. Ma, W., Li, Y., Ge, C., Wang, M. & Zhou, D. Effect of genotype on cadmium and trace element accumulation in wheat from weakly alkaline cadmium-contaminated soil. Bull. Environ. Contam. Toxicol. 113, 9 https://doi.org/10.1007/s00128-024-03915-9 (2024).

    Google Scholar 

  71. Mesnoua, M. et al. Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex Halimus L. Plant. Physiol. Biochem. 106, 30–38. https://doi.org/10.1016/j.plaphy.2016.04.041 (2016).

    Google Scholar 

  72. Tang, Z., Wang, H. Q., Chen, J., Chang, J. D. & Zhao, F. J. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. J. Integr. Plant. Biol. 64, 570–593. https://doi.org/10.1111/jipb.13440 (2022).

    Google Scholar 

  73. Zhang, H. & Lu, L. Transcription factors involved in plant responses to cadmium-induced oxidative stress. Front. Plant. Sci. 15, 1397289. https://doi.org/10.3389/fpls.2024.1397289 (2024).

    Google Scholar 

  74. Xia, Y., Yang, F., Hu, L., Ji, H. & Shao, J. F. Efficient cadmium uptake and accumulation in Pokeweed (Phytolacca Americana L.) associated with its potential for phytoremediation of cadmium-polluted soils. Plant. Soil. 509, 1–14. https://doi.org/10.1007/s11104-025-07401-x (2025).

    Google Scholar 

  75. Niu, L. et al. Cadmium tolerance and hyperaccumulation in plants – A proteomic perspective of phytoremediation. Ecotoxicol. Environ. Saf. 256, 114882. https://doi.org/10.1016/j.ecoenv.2023.114882 (2023).

    Google Scholar 

  76. Ali, S. & Khan, N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol. Res. 249, 126771. https://doi.org/10.1016/j.micres.2021.126771 (2021).

    Google Scholar 

  77. Zacchini, M. et al. Metal Tolerance, accumulation and translocation in Poplar and Willow clones treated with cadmium in hydroponics. Water Air Soil. Pollut. 197, 23–34. https://doi.org/10.1007/s11270-008-9788-7 (2009).

    Google Scholar 

  78. Rascio, N. & Navari-Izzo, F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant. Sci. 180, 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016 (2011).

    Google Scholar 

  79. Rivetta, A., Pesenti, M., Sacchi, G. A., Nocito, F. F. & Cocucci, M. Cadmium transport in maize root segments using a classical physiological approach: evidence of influx largely exceeding efflux in subapical regions. Plants. 12(5), 992. https://doi.org/10.3390/plants12050992 (2023).

    Google Scholar 

Download references