References
-
Guo, H. et al. Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum. Ecotoxicol. Environ. Saf. 195, 110502. https://doi.org/10.1016/j.ecoenv.2020.110502 (2020).
-
Zhang, K. et al. Screening of peanut cultivars with low-cadmium accumulation assisted by cadmium resistance: promoting safe utilization of cadmium contaminated soils. Appl. Soil. Ecol. 193, 105109. https://doi.org/10.1016/j.apsoil.2023.105109 (2024).
-
Haider, F. U. et al. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol. Environ. Saf. 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887 (2021).
-
Zhang, R. et al. Nitrogen/Phosphorus ratio affected the growth of an invasive plant Alternanthera Philoxeroides under cadmium stress. Phyton-Int J. Exp. Bot. 94 https://doi.org/10.32604/phyton.2025.062281 (2025).
-
Wang, Y. et al. Cadmium accumulation and tolerance of Lagerstroemia indica and Lagerstroemia Fauriei (Lythraceae) seedlings for phytoremediation applications. Int. J. Phytorem. 18, 1104–1112. https://doi.org/10.1080/15226514.2016.1183581 (2016).
-
Liao, Q. L. et al. Association of soil cadmium contamination with ceramic industry: a case study in a Chinese town. Sci. Total Environ. 514, 26–32. https://doi.org/10.1016/j.scitotenv.2015.01.084 (2015).
-
Jiang, C., Cui, S., Feng, Q. & Sun, X. Advances in cd remediation techniques for contaminated soils. IOP Conf. Ser. Earth Environ. Sci. 621, 012129. https://doi.org/10.1088/1755-1315/621/1/012129 (2021).
-
Elhakem, H. A. Alleviating cadmium toxicity in maize plants: role of Glycine betaine in enhancing growth, photosynthetic efficiency, water status, and antioxidant defense mechanism. Plant. Soil. Environ. 70, 617–631. https://doi.org/10.17221/66/2024-PSE (2024).
-
Gallego, S. M. et al. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006 (2012).
-
Das, S., Goswami, S. & Das Talukdar, A. Physiological responses of water hyacinth, Eichhornia crassipes (Mart.) Solms, to cadmium and its phytoremediation potential. Turk. J. Biol. 40, 84–94. https://doi.org/10.3906/biy-1411-86 (2016).
-
Khan, I. Z. et al. Assessment of cadmium toxicity in buffaloes grazing on forages cultivated in diverse irrigated soils: a comprehensive analysis. Plant. Soil. Environ. 71, 202–212. https://doi.org/10.17221/42/2025-PSE (2025).
-
Luo, J. S. & Zhang, Z. Mechanisms of cadmium phytoremediation and detoxification in plants. Crop J. 9, 521–529. https://doi.org/10.1016/j.cj.2021.02.001 (2021).
-
Zhang, X. et al. The Uptake, Transfer, and detoxification of cadmium in plants and its exogenous effects. Cells. 13(11), 907. https://doi.org/10.3390/cells13110907 (2024).
-
Tao, J. & Lu, L. Advances in Genes-Encoding transporters for cadmium Uptake, Translocation, and accumulation in plants. Toxics. 10(8), 411. https://doi.org/10.3390/toxics10080411 (2022).
-
Hu, Y. et al. Cadmium toxicity in plants: from transport to tolerance mechanisms. Plant. Signal. Behav. 20(1), 2544316. https://doi.org/10.1080/15592324.2025.2544316 (2025).
-
Song, X. et al. High cadmium-accumulating Salix ecotype shapes rhizosphere Microbiome to facilitate cadmium extraction. Environ. Int. 190, 108904. https://doi.org/10.1016/j.envint.2024.108904 (2024).
-
Mukherjee, S. et al. Sustainable management of post-phytoremediation biomass. Energy Ecol. Environ. 10, 675–709. https://doi.org/10.1007/s40974-025-00364-w (2025).
-
Zhang, S. et al. Effects of malic acid on cadmium uptake and translocation and essential element accumulation in rice. Toxics. 13(10), 811. https://doi.org/10.3390/toxics13100811 (2025).
-
Zhuang, X. et al. Characteristics of cadmium accumulation and tolerance in Apple plants grown in different soils. Front. Plant. Sci. 14, 1188241. https://doi.org/10.3389/fpls.2023.1188241 (2023).
-
Shah, N. et al. The deteriorating effects of cadmium accumulation on the yield and quality of maize crops. South. Afr. J. Bot. 160, 732–738. https://doi.org/10.1016/j.sajb.2023.07.050 (2023).
-
Luo, P. et al. An overview of the mechanisms through which plants regulate ROS homeostasis under cadmium stress. Antioxidants. 13(10), 1174. https://doi.org/10.3390/antiox13101174 (2024).
-
Al-Khayri, J. M. et al. Cadmium toxicity in medicinal plants: an overview of the tolerance strategies, biotechnological and omics approaches to alleviate metal stress. Front. Plant. Sci. 13, 1047410. https://doi.org/10.3389/fpls.2022.1047410 (2023).
-
Bellini, E. et al. Glutathione and phytochelatins jointly allow intracellular and extracellular detoxification of cadmium in the liverwort Marchantia polymorpha. Environ. Exp. Bot. 209, 105303. https://doi.org/10.1016/j.envexpbot.2023.105303 (2023).
-
Raza, A. et al. Phytoremediation of cadmium: Physiological, Biochemical, and molecular mechanisms. Biology. 9(7), 117. https://doi.org/10.3390/biology9070177 (2020).
-
Galvis, D. A., Jaimes-Suárez, Y. Y., Molina, R., Ruiz, J., Carvalho, F. E. L. & R. & Cadmium uptaking and allocation in wood species associated to Cacao agroforestry systems and its potential role for phytoextraction. Plants. 12(16), 2930. https://doi.org/10.3390/plants12162930 (2023).
-
Chen, L. et al. Comparative study of metal resistance and accumulation of lead and zinc in two poplars. Physiol. Plant. 151, 390–405. https://doi.org/10.1111/ppl.12120 (2014).
-
Yan, A. et al. Phytoremediation: A promising approach for revegetation of heavy Metal-Polluted land. Front. Plant. Sci. 11, 359. https://doi.org/10.3389/fpls.2020.00359 (2020).
-
Bhat, B. A. et al. Plant hyperaccumulators: a state-of-the-art review on mechanism of heavy metal transport and sequestration. Front. Plant. Sci. 16, 1631378. https://doi.org/10.3389/fpls.2025.1631378 (2025).
-
Li, Y. et al. SpSIZ1 from hyperaccumulator Sedum Plumbizincicola orchestrates SpABI5 to fine-tune cadmium tolerance. Front. Plant. Sci. 15. 1382121. https://doi.org/10.3389/fpls.2024.1382121 (2024).
-
Dai, H., Wei, S., Twardowska, I., Hou, N. & Zhang, Q. Cosmopolitan cadmium hyperaccumulator Solanum nigrum: exploring cadmium uptake, transport and physiological mechanisms of accumulation in different ecotypes as a way of enhancing its hyperaccumulative capacity. J. Environ. Manag. 320, 115878. https://doi.org/10.1016/j.jenvman.2022.115878 (2022).
-
Feng, Y. et al. Ectopic expression of SaNRAMP3 from Sedum Alfredii enhanced cadmium root-to-shoot transport in Brassica juncea. Ecotoxicol. Environ. Saf. 156, 279–286. https://doi.org/10.1016/j.ecoenv.2018.03.031 (2018).
-
Huang, Z. et al. Biochar immobilized Proteus mirabilis Ch8 to enhance the cd phytoremediation potential of Woody plant Robinia Pseudoacacia L. J. Environ. Manag. 377, 124620. https://doi.org/10.1016/j.jenvman.2025.124620 (2025).
-
Zhai, F. et al. Effects of silicon on the transport, subcellular distribution, and chemical forms of lead in Salix viminalis L. Plant. Soil. Environ. 71, 249–258. https://doi.org/10.17221/8/2025-PSE (2025).
-
Zhao, H. et al. Effects of cadmium stress on growth and physiological characteristics of Sassafras seedlings. Sci. Rep. 11, 9913. https://doi.org/10.1038/s41598-021-89322-0 (2021).
-
Jia, Y. et al. Mechanisms of cadmium tolerance and detoxification in two ornamental plants. Agronomy. 13(8), 2039. https://doi.org/10.3390/agronomy13082039 (2023).
-
Kovačević, B. et al. Interclonal variation in heavy metal accumulation among Poplar and Willow clones: implications for phytoremediation of contaminated landfill soils. Plants. 14(4), 567. https://doi.org/10.3390/plants14040567 (2025).
-
Landberg, T. & Greger, M. Phytoremediation using Willow in industrial contaminated soil. Sustainability 14, 8449. https://doi.org/10.3390/su14148449 (2022).
-
Yu, M. et al. Molecular insights into lignin biosynthesis on cadmium tolerance: Morphology, transcriptome and proteome profiling in Salix Matsudana. J. Hazard. Mater. 41, 129909. https://doi.org/10.1016/j.jhazmat.2022.129909 (2022).
-
Bravo, M. A. et al. Variation in root system architecture and lead accumulation in Sweetpotato (Ipomoea Batatas L.) cultivars Bayou Belle and Beauregard. HortScience 60, 871–877. https://doi.org/10.21273/HORTSCI18492-25 (2025).
-
Wang, J. et al. Conjoint analysis of physio-biochemical, transcriptomic, and metabolomic reveals the response characteristics of Solanum nigrum L. to cadmium stress. BMC Plant. Biol. 24, 567. https://doi.org/10.1186/s12870-024-05278-z (2024).
-
Wu, M. et al. Physiological and biochemical mechanisms preventing cd toxicity in the new hyperaccumulator Abelmoschus manihot. J. Plant. Growth Regul. 37, 709–718. https://doi.org/10.1007/s00344-017-9765-8 (2018).
-
Samreen, S., Khan, A. A., Khan, M. R., Ansari, S. A. & Khan, A. Assessment of phytoremediation potential of seven weed plants growing in Chromium- and Nickel-Contaminated soil. Water Air Soil. Pollut. 232, 209. https://doi.org/10.1007/s11270-021-05124-0 (2021).
-
Chen, H., Zhao, H. & Zhao, B. Exploring the remediation potential of hydrangea macrophylla (Thunb.) Ser. In cadmium-contaminated soil by comparing cultivars and seedling age. Environ. Technol. Innov. 33, 103474. https://doi.org/10.1016/j.eti.2023.103474 (2024).
-
Wu, J., Qian, C., Liu, Z. & Zhong, X. Phytoremediation potential of hybrid Pennisetum in cadmium-contaminated soil and its physiological responses to cadmium. Environ. Sci. Pollut Res. 30, 26208–26217. https://doi.org/10.1007/s11356-022-23848-2 (2023).
-
Zafar-ul-Hye, M. et al. Effect of cadmium-Tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants. 9, 1386. https://doi.org/10.3390/plants9101386 (2020).
-
Carvalho, M. E. A., Castro, P. R. C. & Azevedo, R. A. Hormesis in plants under cd exposure: from toxic to beneficial element? J. Hazard. Mater. 384, 1–9. https://doi.org/10.1016/j.jhazmat.2019.121434 (2019).
-
Fan, D. et al. The role of the ABF1 gene in regulation of Cd-induced hormesis in Arabidopsis Thaliana. J. Hazard. Mater. 458, 131991. https://doi.org/10.1016/j.jhazmat.2023.131991 (2023).
-
Jalal, A. et al. Hormesis in plants: physiological and biochemical responses. Ecotoxicol. Environ. Saf. 207, 111225. https://doi.org/10.1016/j.ecoenv.2020.111225 (2020).
-
Jiao, Q. et al. Transcriptomic and ultrastructural insights into zinc-induced hormesis in wheat seedlings: Glutathione-mediated antioxidant defense in zinc toxicity regulation. Plant. Stress. 16,100820. https://doi.org/10.1016/j.stress.2025.100820 (2025).
-
Seth, C. S., Kumar Chaturvedi, P. & Misra, V. The role of phytochelatins and antioxidants in tolerance to cd accumulation in Brassica juncea L. Ecotoxicol. Environ. Saf. 71, 76–85. https://doi.org/10.1016/j.ecoenv.2007.10.030 (2008).
-
Jia, L. et al. Hormesis effects induced by cadmium on growth and photosynthetic performance in a Hyperaccumulator, Lonicera Japonica thunb. J. Plant. Growth Regul. 34, 13–21. https://doi.org/10.1007/s00344-014-9433-1 (2015).
-
Jia, L. et al. Hormesis phenomena under cd stress in a hyperaccumulator–Lonicera Japonica thunb. Ecotoxicology 22, 476–485. https://doi.org/10.1007/s10646-013-1041-5 (2013).
-
Zheng, G., Zhang, J., Liu, Y., Han, S. & Li, P. Significance of glutathione in the hormesis effect: a case study of the relationship between heavy metal cd and monitoring plant Tillandsia Ionantha. Plant. Physiol. Biochem. 227, 110130. https://doi.org/10.1016/j.plaphy.2025.110130 (2025).
-
Ci, D. et al. Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiol. Plant. 34, 191–202. https://doi.org/10.1007/s11738-011-0818-5 (2011).
-
Zhang, F., Liu, M., Li, Y., Che, Y. & Xiao, Y. Effects of arbuscular mycorrhizal fungi, Biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 655, 1150–1158. https://doi.org/10.1016/j.scitotenv.2018.11.317 (2019).
-
Sabella, E. et al. Effects of cadmium on root Morpho-Physiology of durum wheat. Front. Plant. Sci. 13, 936020. https://doi.org/10.3389/fpls.2022.936020 (2022).
-
Romdhane, L. et al. Root characteristics and metal uptake of maize (Zea Mays L.) under extreme soil contamination. Agronomy. 11, 010178. https://doi.org/10.3390/agronomy11010178 (2021).
-
Poschenrieder, C., Cabot, C., Martos, S., Gallego, B. & Barceló, J. Do toxic ions induce hormesis in plants? Plant. Sci. 212, 15–25. https://doi.org/10.1016/j.plantsci.2013.07.012 (2013).
-
Moeen-ud-din, M., Yang, S. & Wang, J. Auxin homeostasis in plant responses to heavy metal stress. Plant. Physiol. Biochem. 205, 108210. https://doi.org/10.1016/j.plaphy.2023.108210 (2023).
-
Li, S. et al. Auxin is involved in cadmium accumulation in rice through controlling nitric oxide production and the ability of cell walls to bind cadmium. Sci. Total Environ. 904, 166644. https://doi.org/10.1016/j.scitotenv.2023.166644 (2023).
-
Guo, Y. et al. A phytoremediation efficiency assessment of cadmium (Cd)-Contaminated soils in the three Gorges reservoir Area, China. Plants 14, 2202. https://doi.org/10.3390/plants14142202 (2025).
-
Yang, L. et al. High iron supply enhances cadmium accumulation in the aerial tissues by remodeling the root cell walls in Populus Cathayana. Ind. Crops Prod. 228, 10875. https://doi.org/10.1016/j.indcrop.2025.120875 (2025).
-
Ye, L. et al. Plant sex influences cadmium detoxification via mediating cadmium transport and cell wall modification under different nitrogen forms. Plant. Cell. Environ. 48(10), 7517–7532. https://doi.org/10.1111/pce.70050 (2025).
-
Deepika, N. & Haritash, A. K. Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: a critical review. Hortic. Environ. Biotech. 64, 709–734. https://doi.org/10.1007/s13580-023-00518-x (2023).
-
Marabesi, A. O., Nambeesan, S. U., Van Iersel, M. W., Lessl, J. T. & Coolong, T. W. J. F. i. P. S. Cadmium exposure is associated with increased transcript abundance of multiple heavy metal associated transporter genes in roots of hemp (Cannabis sativa L). Front. Plant. Sci. 14, 1183249. https://doi.org/10.3389/fpls.2023.1183249 (2023).
-
Hu, Y. et al. Exogenous silicon promotes cadmium (Cd) accumulation in Sedum Alfredii hance by enhancing cd uptake and alleviating cd toxicity. Front. Plant. Sci. 14, 1134370. https://doi.org/10.3389/fpls.2023.1134370 (2023).
-
Qadir, M. et al. Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere. 258, 127386. https://doi.org/10.1016/j.chemosphere.2020.127386 (2020).
-
Shah, N. et al. Enhancement of cadmium phytoremediation potential of Helianthus annus L. with application of EDTA and IAA. Metabolites. 12, 1049. https://doi.org/10.3390/metabo12111049 (2022).
-
Jiang, Y., Huang, R., Jiang, L., Chen, K. & Zhu, W. Alleviation of cadmium toxicity to Medicago truncatula by AMF involves the changes of cd speciation in rhizosphere soil and subcellular distribution. Phyton-Int J. Exp. Bot. 90 https://doi.org/10.32604/phyton.2021.014376 (2021).
-
Ma, W., Li, Y., Ge, C., Wang, M. & Zhou, D. Effect of genotype on cadmium and trace element accumulation in wheat from weakly alkaline cadmium-contaminated soil. Bull. Environ. Contam. Toxicol. 113, 9. https://doi.org/10.1007/s00128-024-03915-9 (2024).
-
Mesnoua, M. et al. Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex Halimus L. Plant. Physiol. Biochem. 106, 30–38. https://doi.org/10.1016/j.plaphy.2016.04.041 (2016).
-
Tang, Z., Wang, H. Q., Chen, J., Chang, J. D. & Zhao, F. J. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. J. Integr. Plant. Biol. 64, 570–593. https://doi.org/10.1111/jipb.13440 (2022).
-
Zhang, H. & Lu, L. Transcription factors involved in plant responses to cadmium-induced oxidative stress. Front. Plant. Sci. 15, 1397289. https://doi.org/10.3389/fpls.2024.1397289 (2024).
-
Xia, Y., Yang, F., Hu, L., Ji, H. & Shao, J. F. Efficient cadmium uptake and accumulation in Pokeweed (Phytolacca Americana L.) associated with its potential for phytoremediation of cadmium-polluted soils. Plant. Soil. 509, 1–14. https://doi.org/10.1007/s11104-025-07401-x (2025).
-
Niu, L. et al. Cadmium tolerance and hyperaccumulation in plants – A proteomic perspective of phytoremediation. Ecotoxicol. Environ. Saf. 256, 114882. https://doi.org/10.1016/j.ecoenv.2023.114882 (2023).
-
Ali, S. & Khan, N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol. Res. 249, 126771. https://doi.org/10.1016/j.micres.2021.126771 (2021).
-
Zacchini, M. et al. Metal Tolerance, accumulation and translocation in Poplar and Willow clones treated with cadmium in hydroponics. Water Air Soil. Pollut. 197, 23–34. https://doi.org/10.1007/s11270-008-9788-7 (2009).
-
Rascio, N. & Navari-Izzo, F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant. Sci. 180, 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016 (2011).
-
Rivetta, A., Pesenti, M., Sacchi, G. A., Nocito, F. F. & Cocucci, M. Cadmium transport in maize root segments using a classical physiological approach: evidence of influx largely exceeding efflux in subapical regions. Plants. 12(5), 992. https://doi.org/10.3390/plants12050992 (2023).
