References
-
Mazanko, M. S. et al. Beneficial effects of spore-forming Bacillus probiotic bacteria isolated from poultry microbiota on broilers’ health, growth performance, and immune system. Front. Vet. Sci. 9, 1–12 (2022).
-
Thi, L. et al. In vitro safety evaluation of Bacillus subtilis species complex isolated from Vietnam and their additional beneficial properties. Vietnam J. Biotechnol. 20, 727–740 (2022).
-
Nguyen, H. A. et al. Whole genome sequence analysis of Bacillus amyloliquefaciens strain S2.5 as a potential probiotic for feed supplement in livestock production. J. Genet. Eng. Biotechnol. 22, 100404 (2024).
-
Barbosa, A. M. S. et al. Performance and health parameters of sows and their litters using a probiotic supplement composed of Bacillus subtilis 541 and Bacillus amyloliquefaciens 516. Animals 14, 1–21 (2024).
-
Li, S. et al. Bacillus amyloliquefaciens TL promotes gut health of broilers by the contribution of bacterial extracellular polysaccharides through its anti-inflammatory potential. Front. Immunol. 15, 1–17 (2024).
-
Bao, C. et al. The effects of dietary Bacillus amyloliquefaciens TL106 supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, epithelial barrier integrity, and intestinal microbiota in broilers. Animals 12, 3085 (2022).
-
Zalila-Kolsi, I., Ben-Mahmoud, A. & Al-Barazie, R. Bacillus amyloliquefaciens: harnessing its potential for industrial, medical, and agricultural applications—a comprehensive review. Microorganisms 11, 2215 (2023).
-
Bai, J. et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J. Anim. Sci. Biotechnol. 13, 1–14 (2022).
-
Luo, L., Zhao, C., Wang, E., Raza, A. & Yin, C. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiol. Res. 259, 127016 (2022).
-
Wizna, Yanti, E. P. & Amizar, R. Effect of Bacillus amyloliquefaciens as probiotic on total colonies of bacteria, pH and cellulase activity in the small intestine of domestic chicken. Asian J. Agric. Biol. 7, 176–183 (2019).
-
Shija, V. M. et al. Dietary effects of probiotic bacteria, Bacillus amyloliquefaciens AV5 on growth, serum and mucus immune response, metabolomics, and lipid metabolism in nile tilapia (Oreochromis niloticus). Aquacult. Nutr., 202 , 4253969. (2024).
-
Du, H. et al. Effects of Bacillus amyloliquefaciens TL106 isolated from Tibetan pigs on probiotic potential and intestinal microbes in weaned piglets. Microbiol. Spectr. 10, e01205–e01221 (2022).
-
Chen, S. et al. The effects of Bacillus amyloliquefaciens SC06 on behavior and brain function in broilers infected by clostridium perfringens. Animals 14, 1–15 (2024).
-
Zhang, T. et al. Alleviation of neuronal cell death and memory deficit with chungkookjang made with Bacillus amyloliquefaciens and Bacillus subtilis potentially through promoting gut–brain axis in artery-occluded gerbils. Foods 10, 2697 (2021).
-
Abd-Elhalim, B. T., Gamal, R. F., El-Sayed, S. M. & Abu-Hussien, S. H. Optimizing alpha-amylase from Bacillus amyloliquefaciens on bread waste for effective industrial wastewater treatment and textile desizing through response surface methodology. Sci. Rep. 13, 1–17 (2023).
-
Xiong, D. et al. Purification, and characterization of a laccase-degrading aflatoxin B1 from Bacillus amyloliquefaciens B10. Toxins (Basel). 14, 250 (2022).
-
Chen, X. H. et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014 (2007).
-
Luo, Y. et al. Genome sequencing of biocontrol strain Bacillus amyloliquefaciens Bam1 and further analysis of its heavy metal resistance mechanism. Bioresour. Bioprocess. 9, 74 (2022).
-
Ponomareva, E. N. et al. Probiotic Bacillus amyloliquefaciens B-1895 improved growth of juvenile trout. Food Sci. Anim. Resour. 44, 805–816 (2024).
-
Horyanto, D. et al. Bacillus amyloliquefaciens probiotics mix supplementation in a broiler leaky gut model. Microorganisms 12, 419 (2024).
-
Rückert, C., Blom, J., Chen, X. H., Reva, O. & Borriss, R. Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. J. Biotechnol. 155, 78–85 (2011).
-
Dhumal, G., Mohan, M. & Chaudhari, K. Bacillus amyloliquefaciens: A review. Res. Rev. J. Microbiol. Virol. 11, 9–17 (2021).
-
Maslennikova, V. S. et al. Bacillus subtilis and Bacillus amyloliquefaciens mix suppresses rhizoctonia disease and improves rhizosphere microbiome, growth and yield of potato (Solanum tuberosum L). J. Fungi. 9, 1142 (2023).
-
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
-
Salzberg, S. L. et al. GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome Res. 22, 557–567 (2012).
-
Bosi, E. et al. MeDuSa: A multi-draft based scaffolder. Bioinformatics 31, 2443–2451 (2015).
-
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, 1–22 (2017).
-
Alonge, M. et al. Automated assembly scaffolding using ragtag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 1–19 (2022).
-
Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
-
Paulino, D. et al. Sealer: A scalable gap-closing application for finishing draft genomes. BMC Bioinform. 16, 1–8 (2015).
-
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).
-
Schwengers, O. et al. Bakta: Rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genomics. 7, 000685 (2021).
-
Fan, B., Blom, J., Klenk, H. P. & Borriss, R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an ‘operational group B. amyloliquefaciens’ within the B. subtilis species complex. Front. Microbiol. 8, 1–15 (2017).
-
Feng, J. et al. Curing the plasmid pMC1 from the Poly (γ-glutamic acid) producing Bacillus amyloliquefaciens LL3 strain using plasmid incompatibility. Appl. Biochem. Biotechnol. 171, 532–542 (2013).
-
Molinatto, G. et al. Key impact of an uncommon plasmid on Bacillus amyloliquefaciens subsp. Plantarum S499 developmental traits and lipopeptide production. Front. Microbiol. 8, 1–18 (2017).
-
Choi, Y. et al. A native conjugative plasmid confers potential selective advantages to plant growth-promoting Bacillus velezensis strain GH1-13. Commun. Biol. 4, 1–16 (2021).
-
Murai, M., Miyashita, H., Araki, H., Seki, T. & Oshima, Y. Molecular structure of the replication origin of a Bacillus amyloliquefaciens plasmid pFTB14. Mol. General Genet. MGG 210, 92–100 (1987).
-
Mason, V. P., Syrett, N., Hassanali, T. & Osborn, A. M. Diversity and linkage of replication and mobilisation genes in Bacillus rolling circle-replicating plasmids from diverse geographical origins. FEMS Microbiol. Ecol. 42, 235–241 (2002).
-
Blum, M. et al. The interpro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).
-
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).
-
Carbon, S. et al. The gene ontology resource: enriching a gold mine. Nucleic Acids Res. 49, D325–D334 (2021).
-
Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).
-
Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).
-
Terlouw, B. R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2023).
-
Lombard, V., Ramulu, G., Drula, H., Coutinho, E., Henrissat, B. & P. M. & The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, 490–495 (2014).
-
Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577 (2022).
-
Begley, M., Hill, C. & Gahan, C. G. M. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729–1738 (2006).
-
Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. TRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).
-
Miethke, M. et al. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol. 61, 1413–1427 (2006).
-
Diehl, A. et al. Structural changes of TasA in biofilm formation of Bacillus subtilis. Proc. Natl. Acad. Sci. U S A. 115, 3237–3242 (2018).
-
Dahl, M. K., Msadek, T., Kunst, F. & Rapoport, G. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173, 2539–2547 (1991).
-
Yin, Y., Wang, X., Zhang, P., Wang, P. & Wen, J. Strategies for improving fengycin production: A review. Microb. Cell. Fact. 23, 1–14 (2024).
-
Yang, H., Li, X., Li, X., Yu, H. & Shen, Z. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal. Bioanal Chem. 407, 2529–2542 (2015).
-
Koumoutsi, A. et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186, 1084–1096 (2004).
-
Butcher, R. A. et al. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl. Acad. Sci. U S A. 104, 1506–1509 (2007).
-
Moldenhauer, J. et al. The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: Direct evidence for β,y dehydration by a iraiw-acyltransferase polyketide synthase. Angew Chemie – Int. Ed. 49, 1465–1467 (2010).
-
Chen, X. H. et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J. Bacteriol. 188, 4024–4036 (2006).
-
Schneider, K. et al. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70, 1417–1423 (2007).
-
Blin, K. et al. AntiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).
-
Van Heel, A. J. et al. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).
-
Alcock, B. P. et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 51, D690–D699 (2023).
-
Arndt, D. et al. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).
-
Bertelli, C. et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45, W30–W35 (2017).
-
Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial ‘pan-genome’. Proc. Natl. Acad. Sci. U S A. 102, 13950–13955 (2005).
-
Tettelin, H., Riley, D., Cattuto, C. & Medini, D. Comparative genomics: The bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477 (2008).
-
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996 (2018).
-
Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
-
Bryant, M. P. & Robinson, I. M. An improved nonselective culture medium for ruminal bacteria and its use in determining diurnal variation in numbers of bacteria in the rumen. J. Dairy. Sci. 44, 1446–1456 (1961).
-
Al-hasan, B. A. The first isolation and detection of ornithobacterium rhinotracheale from swollen head syndrome-infected broiler flocks in Iraq. 14, 2346–2355 (2021).
-
Mao, D., Zhou, Q., Chen, C. & Quan, Z. Coverage evaluation of universal bacterial primers using the metagenomic datasets. (2012).
-
Weber, S., Ramirez, C. & Doerfler, W. Signal hotspot mutations in SARS-CoV-2 genomes evolve as the virus spreads and actively replicates in different parts of the world. Virus Res. 289, 198170 (2020).
-
Edgar, R. C. & MUSCLE Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
-
Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
-
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
-
Bolger, A. M., Lohse, M., Usadel, B. & Trimmomatic A flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
-
Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
-
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, (2014).
-
Laetsch, D. R., Blaxter, M. L. & BlobTools Interrogation of genome assemblies. F1000Research 6, 1287 (2017).
-
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with kraken 2. Genome Biol. 20, 1–13 (2019).
-
Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2020).
-
Jolley, K. A., Maiden, M. C. J. & BIGSdb Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11, (2010).
-
Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, E35 (2018).
-
Carattoli, A. et al. In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).
-
Paganini, J. A. et al. PlasmidEC and gplas2: an optimized short-read approach to predict and reconstruct antibiotic resistance plasmids in Escherichia coli. Microb. Genomics. 10, 1–14 (2024).
-
Antipov, D. et al. Genome analysis plasmidspades: assembling plasmids from whole genome sequencing data. 32, 3380–3387 (2016).
-
Chu, C., Li, X., Wu, Y. & GAPPadder A sensitive approach for closing gaps on draft genomes with short sequence reads. BMC Genom. 20, 1–10 (2019).
-
Nadalin, F., Vezzi, F., Policriti, A. & GapFiller A de Novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 13, (2012).
-
Xu, M. et al. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 9, 1–11 (2020).
-
Hunt, M. et al. Automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16, 1–10 (2015). Circlator.
-
Brettin, T. et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5, (2015).
-
Cantalapiedra, C. P., Hern̗andez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
-
Zheng, J. dbCAN3: automated carbohydrate-active enzyme and. 51, 115–121 (2023).
-
Weimann, A. et al. From Genomes to Phenotypes: Traitar, the Microbial Trait Analyzer. mSystems 1, (2016).
-
Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).
-
Jia, B. et al. CARD 2017 : Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).
-
Gupta, S. K. et al. ARG-annot, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220 (2014).
-
Feldgarden, M. et al. Validating the amrfinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 63, 1–19 (2019).
-
Doster, E. et al. MEGARes 2.0: A database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 48, D561–D569 (2020).
-
Chen, L., Zheng, D., Liu, B., Yang, J. & Jin, Q. VFDB 2016: hierarchical and refined dataset for big data analysis – 10 years on. Nucleic Acids Res. 44, D694–D697 (2016).
-
Ingle, D. et al. In Silico serotyping of E. Coli from short read data identifies limited novel o-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb. Genomics. 2, 1–14 (2016).
-
Akhter, S., Aziz, R. K., Edwards, R. A. & PhiSpy A novel algorithm for finding prophages in bacterial genomes that combines similarity-and composition-based strategies. Nucleic Acids Res. 40, 1–13 (2012).
-
Eren, A. M. et al. Anvi’o: An advanced analysis and visualization platformfor ’omics data. PeerJ 2015, 1–29 (2015).
