Computational design of allulose-responsive biosensor toolbox for auto-inducible protein expression and CRISPRi mediated dynamic metabolic regulation

computational-design-of-allulose-responsive-biosensor-toolbox-for-auto-inducible-protein-expression-and-crispri-mediated-dynamic-metabolic-regulation
Computational design of allulose-responsive biosensor toolbox for auto-inducible protein expression and CRISPRi mediated dynamic metabolic regulation

References

  1. Weidemüller, P., Kholmatov, M., Petsalaki, E. & Zaugg, J. B. Transcription factors: bridge between cell signaling and gene regulation. Proteomics 21, e2000034 (2021).

    Google Scholar 

  2. Cheng, F., Tang, X. L. & Kardashliev, T. Transcription factor-based biosensors in high-throughput screening: advances and applications. Biotechnol. J. 13, e1700648 (2018).

    Google Scholar 

  3. Rogers, J. K. & Church, G. M. Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. USA 113, 2388–2393 (2016).

    Google Scholar 

  4. Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).

    Google Scholar 

  5. Zhang, Y. et al. Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Nat. Commun. 13, 1–14 (2022).

    Google Scholar 

  6. Pham, C., Stogios, P. J., Savchenko, A. & Mahadevan, R. Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection. Curr. Opin. Biotechnol. 76, 102753 (2022).

    Google Scholar 

  7. Lu, M. et al. Transcription factor-based biosensor: a molecular-guided approach for advanced biofuel synthesis. Biotechnol. Adv. 72, 108339 (2024).

    Google Scholar 

  8. Gao, J. S. et al. Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction. Metab. Eng. 73, 144–157 (2022).

    Google Scholar 

  9. Gong, X. Y. et al. Engineering of a TrpR-based biosensor for altered dynamic range and ligand preference. ACS Synth. Biol. 11, 2175–2183 (2022).

    Google Scholar 

  10. Chen, Y. et al. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Nat. Commun. 9, 64 (2018).

    Google Scholar 

  11. D’Ambrosio, V. et al. Directed evolution of VanR biosensor specificity in Yeast. Biotechnol. Notes. 1, 9–15 (2020).

    Google Scholar 

  12. Li, J. et al. Engineering transcription factor xylS for sensing phthalic acid and terephthalic acid: an application for enzyme evolution. ACS Synth. Biol. 11, 1106–1113 (2022).

    Google Scholar 

  13. Wu, T. et al. Engineering transcription factor BmoR mutants for constructing multifunctional alcohol biosensors. ACS Synth. Biol. 11, 1251–1260 (2022).

    Google Scholar 

  14. Swint-Kruse, L. & Matthews, K. S. Allostery in the LacI/GalR family: variations on a theme. Curr. Opin. Microbiol. 12, 129–137 (2009).

    Google Scholar 

  15. Tack, D. S. et al. The genotype-phenotype landscape of an allosteric protein. Mol. Syst. Biol. 17, e10179 (2021).

    Google Scholar 

  16. Yuan, Y., Deng, J. & Cui, Q. Molecular dynamics simulations establish the molecular basis for the broad allostery hotspot distributions in the tetracycline repressor. J. Am. Chem. Soc. 144, 10870–10887 (2022).

    Google Scholar 

  17. Suckow, J. et al. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J. Mol. Biol. 260, 509–523 (1996).

  18. Fu, G. et al. An operator-based expression toolkit for Bacillus subtilis enables fine-tuning of gene expression and biosynthetic pathway regulation. Proc. Natl. Acad. Sci. USA. 119, e2119980119 (2022).

    Google Scholar 

  19. Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172 (2014).

    Google Scholar 

  20. Li, Y. et al. A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria. Nucleic Acids Res. 53, gkae1315 (2025).

    Google Scholar 

  21. Lewis, M. et al. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science. 271, 1247–1254 (1996).

    Google Scholar 

  22. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mole. Biol. 3, 318–356 (1961).

    Google Scholar 

  23. Li, Z., Kessler, W., van den, Heuvel, J. & Rinas, U. Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl. Microbiol. Biotechnol. 91, 1203–1213 (2011).

    Google Scholar 

  24. Landberg, J., Mundhada, H. & Nielsen, A. T. An autoinducible trp-T7 expression system for production of proteins and biochemicals in Escherichia coli. Biotechnol. Bioeng. 117, 1513–1524 (2020).

    Google Scholar 

  25. Liu, M. et al. OptoLacI: optogenetically engineered lactose operon repressor LacI responsive to light instead of IPTG. Nucleic Acids Res. 52, 8003–8016 (2024).

    Google Scholar 

  26. Zhang, Y. et al. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl. Environ. Microbiol. 78, 5831–5838 (2012).

    Google Scholar 

  27. Tang, R.-Q. et al. Design, evolution, and characterization of a xylose biosensor in Escherichia coli using the XylR/xylO system with an expanded operating range. ACS Synth. Biol. 9, 2714–2722 (2020).

    Google Scholar 

  28. Yue, J., Fu, G., Zhang, D. & Wen, J. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis. Biotechnol. Lett. 39, 1237–1244 (2017).

    Google Scholar 

  29. Armetta, J. et al. Biosensor-based enzyme engineering approach applied to psicose biosynthesis. Synth. Biol. 4, 1–10 (2019).

    Google Scholar 

  30. Xu, B. et al. Directed evolution of Escherichia coli Nissle 1917 to utilize allulose as sole carbon source. Small Methods. 8, 2301385 (2024)

  31. Xie, X., Li, C., Ban, X., Yang, H., & Li, Z. D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications. Crit. Rev. Biotechnol. 45, 353–372 (2024)

  32. Li, C. et al. Growth-coupled evolutionary pressure improving epimerases for D-allulose biosynthesis using a biosensor-assisted in vivo selection platform. Adv. Sci. 11, 2306478 (2024).

    Google Scholar 

  33. Du, Y. et al. Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5’untranslated region for versatile applications in Corynebacterium glutamicum. Biotechnol. Notes. 3, 88–96 (2022).

    Google Scholar 

  34. Yim, S. S., An, S. J., Kang, M., Lee, J. & Jeong, K. J. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110, 2959–2969 (2013).

    Google Scholar 

  35. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  36. Liao, Q. et al. Long time-scale atomistic simulations of the structure and dynamics of transcription factor-DNA recognition. J. Phys. Chem. B. 123, 3576–3590 (2019).

    Google Scholar 

  37. Xu, J., Liu, S., Chen, M., Ma, J. & Matthews, K. S. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. Biochemistry 50, 9002–9013 (2011).

    Google Scholar 

  38. Fu, Y. et al. Structural and functional analyses of the cellulase transcription regulator CelR. FEBS Lett 592, 2776–2785 (2018).

    Google Scholar 

  39. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Google Scholar 

  40. Fu, H., Shao, X., Cai, W. & Chipot, C. Taming rugged free energy landscapes using an average force. Acc. Chem. Res. 52, 3254–3264 (2019).

    Google Scholar 

  41. Zong, Z. et al. Elucidation of the noncovalent interactions driving enzyme activity guides branching enzyme engineering for α-glucan modification. Nat. Commun. 15, 8760 (2024).

    Google Scholar 

  42. Zhou, J. et al. Structural basis for the acylation reaction of alphacoronavirus 3C-like protease. ACS Catal. 14, 8330–8342 (2024).

    Google Scholar 

  43. Yu, H. & Dalby, P. A. Coupled molecular dynamics mediate long-and short-range epistasis between mutations that affect stability and aggregation kinetics. Proc. Natl. Acad. Sci. USA. 115, 1810324115 (2018).

    Google Scholar 

  44. Glasgow, A. et al. Ligand-specific changes in conformational flexibility mediate long-range allostery in the lac repressor. Nat. Commun. 14, 1179 (2023).

    Google Scholar 

  45. Lu, C. et al. Site-resolved energetic information from HX–MS experiments. Nat. Chem. Biol. https://doi.org/10.1038/s41589-025-02049-1 (2025).

  46. Wells, M. L. et al. Conserved energetic changes drive function in an ancient protein fold. bioRxiv https://doi.org/10.1101/2025.04.02.646877 (2025).

  47. Hellman, L. & Fried, M. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007).

    Google Scholar 

  48. Jerabek-Willemsen, M. et al. Microscale thermophoresis: interaction analysis and beyond. J. Mol. Struct. 1077, 101–113 (2014).

    Google Scholar 

  49. Jin, P. et al. Efficient bioconversion of high-concentration d-fructose into d-mannose by a novel N-acyl-d-glucosamine 2-epimerase from Thermobifida halotolerans. Catal. Sci. Technol. 11, 1922–1930 (2021).

    Google Scholar 

  50. Cui, W. et al. Creation of an orthogonal and universal auto-inducible gene expression platform by reprogramming a two-component signal circuit for efficient production of industrial enzymes. Int. J. Biol. Macromol. 283, 137781 (2024).

    Google Scholar 

  51. Brüsseler, C. et al. The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum. Bioresource Technol. 249, 953–961 (2017).

    Google Scholar 

  52. Liu, Y. et al. Microbial synthesis of sedoheptulose from glucose by metabolically engineered Corynebacterium glutamicum. Microb. Cell Fact. 23, 251 (2024).

    Google Scholar 

  53. Yang, J. et al. De novo artificial synthesis of hexoses from carbon dioxide. Sci. Bull. 68, 2370–2381 (2023).

    Google Scholar 

  54. Liu, J., Zhang, W. & Rao, Z. Transcriptional regulator-based biosensors for biomanufacturing in Corynebacterium glutamicum. Microbiol. Res. 297, 128169 (2025).

    Google Scholar 

  55. Liu, Z. et al. Optimization of ultrahigh-throughput screening assay for protein engineering of D-allulose 3-epimerase. Biomolecules. 12, 1547 (2022).

  56. Chen, B. et al. Biosensor-assisted evolution of RhaD for enhancing the biosynthetic yield of d-allulose. Food Biosci. 60, 104426 (2024).

    Google Scholar 

  57. Yao, Z. et al. Unlocking green biomanufacturing potential: superior heterologous gene expression with a T7 integration overexpression system in Bacillus subtilis. ACS. Synth. Biol. 14, 1977–1987 (2024).

    Google Scholar 

  58. Wilms, B. et al. High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol. Bioeng. 73, 95–103 (2001).

    Google Scholar 

  59. Tan, S. Z. & Prather, K. L. Dynamic pathway regulation: recent advances and methods of construction. Curr. Opin. Chem. Biol. 41, 28–35 (2017).

    Google Scholar 

  60. Hauk, P. et al. Homologous quorum sensing regulatory circuit: a dual-input genetic controller for modulating quorum sensing-mediated protein expression in E. coli. ACS Synth Biol. 9, 2692–2702 (2020).

    Google Scholar 

  61. Zhang, W. et al. d-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit. Rev. Food Sci. Nutr. 63, 5661–5679 (2023).

    Google Scholar 

  62. Men, Y. et al. Co-expression of d-glucose isomerase and d-psicose 3-epimerase: development of an efficient one-step production of d-psicose. Enzyme Microb. Technol. 64, 1–5 (2014).

    Google Scholar 

  63. Li, Z. et al. Engineering Corynebacterium glutamicum for the efficient production of N-acetylglucosamine. Bioresour. Technol. 390, 129865 (2023).

    Google Scholar 

  64. Lee, Y.-G. et al. De novo biosynthesis of 2’-fucosyllactose by bioengineered Corynebacterium glutamicum. Biotechnol. J. 19, 2300461 (2024).

    Google Scholar 

  65. Tian, C. et al. Artificially designed routes for the conversion of starch to value-added mannosyl compounds through coupling in vitro and in vivo metabolic engineering strategies. Metab. Eng. 61, 215–224 (2020).

    Google Scholar 

  66. Yang, J. et al. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum. Biotechnol. Bioeng. 112, 168–180 (2015).

    Google Scholar 

  67. Wu, Y. et al. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis. Biotechnol. Bioeng. 117, 1817–1825 (2020).

    Google Scholar 

  68. Li, M. et al. Efficient multiplex gene repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Front. Bioeng. Biotechnol. 8, 357 (2020).

    Google Scholar 

  69. Yang, J. et al. Development of food-grade expression system for d-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to d-allulose. Biotechnol. Bioeng. 116, 745–756 (2019).

    Google Scholar 

  70. Engler, C. & Marillonnet, S. Golden Gate cloning. Methods Mol. Biol. 1116, 119–131 (2014).

    Google Scholar 

Download references