References
-
Siedliska, A., Piotr, B., Joanna, P., Monika, Z. & Jaromir, K. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance. BMC Plant. Biol. 21, 28 (2021).
-
Elhaissoufi, W., Ghoulam, C., Barakat, A., Zeroual, Y. & Bargaz, A. Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. J. Adv. Res. 38, 13–28 (2022).
-
Chouyia, F., Ventorino, V. & Pepe, O. Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: A review. Front. Plant. Sci. 13, 1035358 (2022).
-
Alori, E., Glick, B. & Babalola, O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8, 971 (2017).
-
Suleimanova, A. D. et al. Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bacterium pantoea sp. strain 3.5.1. Appl. Environ. Microbiol. 81, 6790–6799 (2015).
-
Santos, H. et al. Bacillus velezensis associated with organomineral fertilizer and reduced phosphate doses improves soil microbial—Chemical properties and biomass of sugarcane. Agronomy 12, 2701 (2022).
-
Singh, A. et al. Understanding soil carbon and phosphorus dynamics under grass-legume intercropping in a semi-arid region. Agronomy 13, 1692 (2023).
-
Ahmad, N. et al. Environmental implications of phosphate-based fertilizer industrial waste and its management practices. Environ. Monit. Assess. 195, 1326 (2023).
-
Cordell, D., Schmid-Neset, T., White, S. & Drangert, J. O. Preferred future phosphorus scenarios: A framework for meeting long-term phosphorus needs for global food demand. In Proceedings of the International Conference on Nutrient Recovery from Wastewater Streams, Vancouver, BC, Canada 10–13 (2009).
-
Cooper, J., Lombardi, R., Boardman, D. & Carliell-Marquet, C. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 57, 78–86 (2011).
-
Gross, A., Lin, Y., Weber, P. K., Pett-Ridge, J. & Silver, W. L. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests. J. Ecol. 101, e02928 (2020).
-
Liang, J. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).
-
Neal, A. et al. Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific acid phosphatase gene diversity and abundance. Plant. Soil. 427, 175–189 (2018).
-
Udaondo, Z. et al. Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries. Environ. Microbiol. 22, 3561–3571 (2020).
-
Kiprotich, K., Muoma, J., Omayio, D., Ndombi, T. & Wekesa, C. Molecular characterization and mineralizing potential of phosphorus solubilizing bacteria colonizing common bean (Phaseolus vulgaris L.) rhizosphere in Western Kenya. Int. J. Microbiol. 2023, 6668097 (2023).
-
Massucato, L. et al. Efficiency of combining strains Ag87 (Bacillus megaterium) and Ag94 (Lysinibacillus sp.) as phosphate solubilizers and growth promoters in maize. Microorganisms 10, 1401 (2020).
-
Abd El-Aziz, N. M. et al. Biosolubilization of rock phosphate by Streptomyces sp. MMA-NRC isolated from rhizospheric soil and assessment of ability on wheat growth promotion: insights from genetic improvement random mutation induction Approach, Egyptian academic. J. Biol. Sci. 16 (2), 49–79 (2024).
-
El-Kherbawy, M. I. et al. Chemical characterization of phosphate rock applied in arid region. Middle East. J. Agric. Res. 3 (1), 59–70 (2014).
-
Nautiyal, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170 (1), 265–270 (1999).
-
Murphy, J. & Riley. J. R A modified single solution method for the determination of phosphorus in natural waters. Chem. Acta. 27, 31–36 (1962).
-
Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with NaHCO3 (U.S., 1954).
-
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (6), 1547 (2018).
-
Mei, Y., Chen, Y., Zhai, R. & Liu, Y. Cloning, purification and biochemical properties of a thermostable pectinase from Bacillus halodurans M29. J. Mol. Catal. B Enzym. 94, 77–81 (2013).
-
Eswar, N. et al. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinform. (2006).
-
Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43 (W1), W174–W181 (2015).
-
Kathwate, G. H. In Silico design and characterization of multiepitopes vaccine for SARS-CoV2 from its Spike proteins. BioRxiv 56, 1115–1135 (2020).
-
Heo, L., Park, H. & Seok, C. GalaxyRefne: protein structure refnement driven by side-chain repacking. Nucleic Acids Res. 41, 384–388 (2013).
-
Sahi, S., Tewatia, P. & Malik, B. K. Modeling and simulation studies of human b3 adrenergic receptor and its interactions with agonists. Curr. Comput. Aided Drug Des. 8, 283–295 (2012).
-
Singh, K. D. & Muthusamy, K. Molecular modeling, quantum polarized ligand Docking and structure-based 3D-QSAR analysis of the imidazole series as dual AT1 and ETA receptor antagonists. Acta Pharmacol. Sin. 34, 1592–1606 (2013).
-
Patni, K., Agarwal, P., Kumar, A. & Meena, L. S. Computational evaluation of anticipated PE_PGRS39 protein involvement in host–pathogen interplay and its integration into vaccine development. 3 Biotech. 11 (204), 1–17 (2021).
-
Beg, M. A., Shivangi, Thakur, S. C. & Meena, L. S. Structural prediction and mutational analysis of Rv3906c gene of Mycobacterium tuberculosis H37Rv to determine its essentiality in survival. Adv. Bioinf. 15, 6152014 (2018).
-
Gupta, S., Tewatia, P., Misri, J. & Singh, R. Molecular modeling of cloned Bacillus subtilis keratinase and its insinuation in psoriasis treatment using Docking studies. Indian J. Microbiol. 57 (4), 485–491 (2017).
-
Degryse, B. et al. Silico Docking of urokinase plasminogen activator and integrins. BMC Bioinform. 9, 1–9 (2008).
-
Banerjee, A. et al. Structural characterization and active site prediction of bacterial keratinase through molecular Docking. J. Bioinform. 4, 67–82 (2014).
-
Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual, 3 edn. 132–150 (Cold Spring Harbor Laboratory Press, 2001).
-
Li, X. et al. An improved calcium chloride method preparation and transformation of competent cells. Afr. J. Biotechnol. 9 (50), 8549–8554 (2010).
-
Hanahan, D., Jessee, J. & Bloom, F. R. Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 20, 63–113 (1991).
-
Barman, D. N., Haque, M. D. A., Islam, S. M. D. A., Yun, H. D. & Kim, M. K. Cloning and expression of OphB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide Chlorpyrifos. Ecotoxicol. Environ. Saf. 108, 135–141 (2014).
-
Kesharwani, R. K. & Misra, K. Prediction of binding site for curcuminoids at human topoisomerase II a protein; an in Silico approach. Curr. Sci. 101, 1060–1065 (2011).
-
Froger, A. & Hall, J. E. Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp. 6, 253 (2007).
-
Li, H., Li, R., Yu, H., Zhang, Y. & Feng, H. Evolution and classification of Ser/Thr phosphatase PP2C family in bacteria: sequence conservation, structures, domain distribution. PLoS One. 20 (5), e0322880 (2025).
-
Nilgiriwala, K. S., Alahari, A., Rao, A. S. & Apte, S. K. Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions. Appl. Environ. Microbiol. 74 (17), 5516–5523 (2008).
-
Divya, A., Santhiagu, A. & Jaya Prakash, S. Cloning, expression and characterization of a highly active thermostable Alkaline phosphatase from Bacillus licheniformis MTCC 1483 in Escherichia coli BL21 (DE3)1. Appl. Biochem. Microbiol. 52 (4), 358–365 (2016).
-
Passariello, C. et al. The molecular class C acid phosphatase of Chryseobacterium meningosepticum (OlpA) is a broad-spectrum nucleotidase with Preferential activity on 5’-nucleotides. Biochim. Biophys. Acta. 1648 (1–2), 203–209 (2003).
-
Recio, M. I. et al. Thermotolerant class A acid phosphatase active across broad pH range and diverse substrates. Protein Sci. 34 (9), e70244 (2025).
-
Martínez-Canseco, C. et al. Detection and expression of SapS, a class C nonspecific acid phosphatase with O-phospho-Ltyrosine– phosphatase activity, in Staphylococcus aureus isolates from patients with chronic osteomyelitis. Biomedica 43 (2), 200–212 (2023).
-
Smiley-Moreno, E. et al. Biochemical characterization of a recombinant acid phosphatase from Acinetobacter baumannii. PLoS One. 16 (6), e0252377 (2021).
-
Pramanik, K. et al. An insilico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa. J. Genetic Eng. Biotechnol. 15, 527–537 (2017).
-
Gandhi, N. U. & Chandra, S. B. A. Comparative analysis of three classes of bacterial non-specific Acid phosphatases and archaeal phosphoesterases: evolutionary perspective. Acta Inf. Med. 20 (3), 167–173 (2012).
-
Sajeev-Sheeja, A. & Zhang, S. Structural molecular modeling of bacterial integral membrane protein enzymes and their AlphaFold2 predicted water-soluble QTY variants. J. Proteins Proteom. 15 (4), 635–645 (2024).
-
Caban-Penix, S., Ho, K., Yang, Z., Baral, R. & Bradshaw, N. Docking interactions determine substrate specificity of members of a widespread family of protein phosphatases. J. Biol. Chem. 300 (9), 107700 (2024).
-
Yutaka, S. et al. Gene cloning, overproduction, and characterization of thermolabile Alkaline Phosphatase from a Psychrotrophic Bacterium. Biosci. Biotechnol. Biochem. 69 (2), 364–373 (2005).
-
Kulkarni, S., Ballal, A. & Apte, S. K. Bioprecipitation of uranium from alkaline waste solutions using Recombinant Deinococcus Radiodurans. J. Hazard. Mater. 262, 853–861 (2013).
-
Chaiharn, M., Pathom-aree, W., Sujada, N. & Lumyong, S. Characterization of phosphate solubilizing Streptomyces as a biofertilizer. Chiang Mai J. Sci. 45 (2), 701–716 (2018).
