Conserved regions and molecular cloning of Acid and Alkaline phosphatases in Streptomyces sp. MMA-NRC

conserved-regions-and-molecular-cloning-of-acid-and-alkaline-phosphatases-in-streptomyces-sp.-mma-nrc
Conserved regions and molecular cloning of Acid and Alkaline phosphatases in Streptomyces sp. MMA-NRC

References

  1. Siedliska, A., Piotr, B., Joanna, P., Monika, Z. & Jaromir, K. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance. BMC Plant. Biol. 21, 28 (2021).

    Google Scholar 

  2. Elhaissoufi, W., Ghoulam, C., Barakat, A., Zeroual, Y. & Bargaz, A. Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. J. Adv. Res. 38, 13–28 (2022).

    Google Scholar 

  3. Chouyia, F., Ventorino, V. & Pepe, O. Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: A review. Front. Plant. Sci. 13, 1035358 (2022).

    Google Scholar 

  4. Alori, E., Glick, B. & Babalola, O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8, 971 (2017).

    Google Scholar 

  5. Suleimanova, A. D. et al. Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bacterium pantoea sp. strain 3.5.1. Appl. Environ. Microbiol. 81, 6790–6799 (2015).

    Google Scholar 

  6. Santos, H. et al. Bacillus velezensis associated with organomineral fertilizer and reduced phosphate doses improves soil microbial—Chemical properties and biomass of sugarcane. Agronomy 12, 2701 (2022).

    Google Scholar 

  7. Singh, A. et al. Understanding soil carbon and phosphorus dynamics under grass-legume intercropping in a semi-arid region. Agronomy 13, 1692 (2023).

    Google Scholar 

  8. Ahmad, N. et al. Environmental implications of phosphate-based fertilizer industrial waste and its management practices. Environ. Monit. Assess. 195, 1326 (2023).

    Google Scholar 

  9. Cordell, D., Schmid-Neset, T., White, S. & Drangert, J. O. Preferred future phosphorus scenarios: A framework for meeting long-term phosphorus needs for global food demand. In Proceedings of the International Conference on Nutrient Recovery from Wastewater Streams, Vancouver, BC, Canada 10–13 (2009).

  10. Cooper, J., Lombardi, R., Boardman, D. & Carliell-Marquet, C. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 57, 78–86 (2011).

    Google Scholar 

  11. Gross, A., Lin, Y., Weber, P. K., Pett-Ridge, J. & Silver, W. L. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests. J. Ecol. 101, e02928 (2020).

    Google Scholar 

  12. Liang, J. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).

    Google Scholar 

  13. Neal, A. et al. Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific acid phosphatase gene diversity and abundance. Plant. Soil. 427, 175–189 (2018).

    Google Scholar 

  14. Udaondo, Z. et al. Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries. Environ. Microbiol. 22, 3561–3571 (2020).

    Google Scholar 

  15. Kiprotich, K., Muoma, J., Omayio, D., Ndombi, T. & Wekesa, C. Molecular characterization and mineralizing potential of phosphorus solubilizing bacteria colonizing common bean (Phaseolus vulgaris L.) rhizosphere in Western Kenya. Int. J. Microbiol. 2023, 6668097 (2023).

  16. Massucato, L. et al. Efficiency of combining strains Ag87 (Bacillus megaterium) and Ag94 (Lysinibacillus sp.) as phosphate solubilizers and growth promoters in maize. Microorganisms 10, 1401 (2020).

    Google Scholar 

  17. Abd El-Aziz, N. M. et al. Biosolubilization of rock phosphate by Streptomyces sp. MMA-NRC isolated from rhizospheric soil and assessment of ability on wheat growth promotion: insights from genetic improvement random mutation induction Approach, Egyptian academic. J. Biol. Sci. 16 (2), 49–79 (2024).

    Google Scholar 

  18. El-Kherbawy, M. I. et al. Chemical characterization of phosphate rock applied in arid region. Middle East. J. Agric. Res. 3 (1), 59–70 (2014).

  19. Nautiyal, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170 (1), 265–270 (1999).

    Google Scholar 

  20. Murphy, J. & Riley. J. R A modified single solution method for the determination of phosphorus in natural waters. Chem. Acta. 27, 31–36 (1962).

    Google Scholar 

  21. Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with NaHCO3 (U.S., 1954).

  22. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (6), 1547 (2018).

    Google Scholar 

  23. Mei, Y., Chen, Y., Zhai, R. & Liu, Y. Cloning, purification and biochemical properties of a thermostable pectinase from Bacillus halodurans M29. J. Mol. Catal. B Enzym. 94, 77–81 (2013).

    Google Scholar 

  24. Eswar, N. et al. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinform. (2006).

  25. Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43 (W1), W174–W181 (2015).

    Google Scholar 

  26. Kathwate, G. H. In Silico design and characterization of multiepitopes vaccine for SARS-CoV2 from its Spike proteins. BioRxiv 56, 1115–1135 (2020).

    Google Scholar 

  27. Heo, L., Park, H. & Seok, C. GalaxyRefne: protein structure refnement driven by side-chain repacking. Nucleic Acids Res. 41, 384–388 (2013).

    Google Scholar 

  28. Sahi, S., Tewatia, P. & Malik, B. K. Modeling and simulation studies of human b3 adrenergic receptor and its interactions with agonists. Curr. Comput. Aided Drug Des. 8, 283–295 (2012).

    Google Scholar 

  29. Singh, K. D. & Muthusamy, K. Molecular modeling, quantum polarized ligand Docking and structure-based 3D-QSAR analysis of the imidazole series as dual AT1 and ETA receptor antagonists. Acta Pharmacol. Sin. 34, 1592–1606 (2013).

    Google Scholar 

  30. Patni, K., Agarwal, P., Kumar, A. & Meena, L. S. Computational evaluation of anticipated PE_PGRS39 protein involvement in host–pathogen interplay and its integration into vaccine development. 3 Biotech. 11 (204), 1–17 (2021).

    Google Scholar 

  31. Beg, M. A., Shivangi, Thakur, S. C. & Meena, L. S. Structural prediction and mutational analysis of Rv3906c gene of Mycobacterium tuberculosis H37Rv to determine its essentiality in survival. Adv. Bioinf. 15, 6152014 (2018).

    Google Scholar 

  32. Gupta, S., Tewatia, P., Misri, J. & Singh, R. Molecular modeling of cloned Bacillus subtilis keratinase and its insinuation in psoriasis treatment using Docking studies. Indian J. Microbiol. 57 (4), 485–491 (2017).

    Google Scholar 

  33. Degryse, B. et al. Silico Docking of urokinase plasminogen activator and integrins. BMC Bioinform. 9, 1–9 (2008).

    Google Scholar 

  34. Banerjee, A. et al. Structural characterization and active site prediction of bacterial keratinase through molecular Docking. J. Bioinform. 4, 67–82 (2014).

    Google Scholar 

  35. Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual, 3 edn. 132–150 (Cold Spring Harbor Laboratory Press, 2001).

  36. Li, X. et al. An improved calcium chloride method preparation and transformation of competent cells. Afr. J. Biotechnol. 9 (50), 8549–8554 (2010).

  37. Hanahan, D., Jessee, J. & Bloom, F. R. Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 20, 63–113 (1991).

    Google Scholar 

  38. Barman, D. N., Haque, M. D. A., Islam, S. M. D. A., Yun, H. D. & Kim, M. K. Cloning and expression of OphB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide Chlorpyrifos. Ecotoxicol. Environ. Saf. 108, 135–141 (2014).

    Google Scholar 

  39. Kesharwani, R. K. & Misra, K. Prediction of binding site for curcuminoids at human topoisomerase II a protein; an in Silico approach. Curr. Sci. 101, 1060–1065 (2011).

    Google Scholar 

  40. Froger, A. & Hall, J. E. Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp. 6, 253 (2007).

  41. Li, H., Li, R., Yu, H., Zhang, Y. & Feng, H. Evolution and classification of Ser/Thr phosphatase PP2C family in bacteria: sequence conservation, structures, domain distribution. PLoS One. 20 (5), e0322880 (2025).

    Google Scholar 

  42. Nilgiriwala, K. S., Alahari, A., Rao, A. S. & Apte, S. K. Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions. Appl. Environ. Microbiol. 74 (17), 5516–5523 (2008).

    Google Scholar 

  43. Divya, A., Santhiagu, A. & Jaya Prakash, S. Cloning, expression and characterization of a highly active thermostable Alkaline phosphatase from Bacillus licheniformis MTCC 1483 in Escherichia coli BL21 (DE3)1. Appl. Biochem. Microbiol. 52 (4), 358–365 (2016).

    Google Scholar 

  44. Passariello, C. et al. The molecular class C acid phosphatase of Chryseobacterium meningosepticum (OlpA) is a broad-spectrum nucleotidase with Preferential activity on 5’-nucleotides. Biochim. Biophys. Acta. 1648 (1–2), 203–209 (2003).

    Google Scholar 

  45. Recio, M. I. et al. Thermotolerant class A acid phosphatase active across broad pH range and diverse substrates. Protein Sci. 34 (9), e70244 (2025).

    Google Scholar 

  46. Martínez-Canseco, C. et al. Detection and expression of SapS, a class C nonspecific acid phosphatase with O-phospho-Ltyrosine– phosphatase activity, in Staphylococcus aureus isolates from patients with chronic osteomyelitis. Biomedica 43 (2), 200–212 (2023).

  47. Smiley-Moreno, E. et al. Biochemical characterization of a recombinant acid phosphatase from Acinetobacter baumannii. PLoS One. 16 (6), e0252377 (2021).

    Google Scholar 

  48. Pramanik, K. et al. An insilico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa. J. Genetic Eng. Biotechnol. 15, 527–537 (2017).

    Google Scholar 

  49. Gandhi, N. U. & Chandra, S. B. A. Comparative analysis of three classes of bacterial non-specific Acid phosphatases and archaeal phosphoesterases: evolutionary perspective. Acta Inf. Med. 20 (3), 167–173 (2012).

    Google Scholar 

  50. Sajeev-Sheeja, A. & Zhang, S. Structural molecular modeling of bacterial integral membrane protein enzymes and their AlphaFold2 predicted water-soluble QTY variants. J. Proteins Proteom. 15 (4), 635–645 (2024).

    Google Scholar 

  51. Caban-Penix, S., Ho, K., Yang, Z., Baral, R. & Bradshaw, N. Docking interactions determine substrate specificity of members of a widespread family of protein phosphatases. J. Biol. Chem. 300 (9), 107700 (2024).

    Google Scholar 

  52. Yutaka, S. et al. Gene cloning, overproduction, and characterization of thermolabile Alkaline Phosphatase from a Psychrotrophic Bacterium. Biosci. Biotechnol. Biochem. 69 (2), 364–373 (2005).

  53. Kulkarni, S., Ballal, A. & Apte, S. K. Bioprecipitation of uranium from alkaline waste solutions using Recombinant Deinococcus Radiodurans. J. Hazard. Mater. 262, 853–861 (2013).

    Google Scholar 

  54. Chaiharn, M., Pathom-aree, W., Sujada, N. & Lumyong, S. Characterization of phosphate solubilizing Streptomyces as a biofertilizer. Chiang Mai J. Sci. 45 (2), 701–716 (2018).

    Google Scholar 

Download references