References
-
Jaeger, J. et al. Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–371. https://doi.org/10.1038/nature02678 (2004).
-
Remeseiro, S., Hörnblad, A. & Spitz, F. Gene regulation during development in the light of topologically associating domains. Wiley Interdiscip. Rev. Dev. Biol. 5, 169–185. https://doi.org/10.1002/wdev.218 (2016).
-
Ben-Tabou de-Leon, S. & Davidson, E. H. Gene regulation: gene control network in development. Annu Rev Biophys Biomol Struct 36, 191. https://doi.org/10.1146/annurev.biophys.35.040405.102002 (2007).
-
Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800. https://doi.org/10.1126/science.1113832 (2006).
-
Macneil, L. T. & Walhout, A. J. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res 21, 645–657. https://doi.org/10.1101/gr.097378.109 (2011).
-
Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664. https://doi.org/10.1126/science.1069492 (2002).
-
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676. https://doi.org/10.1016/j.cell.2006.07.024 (2006).
-
Wytock, T. P. & Motter, A. E. Cell reprogramming design by transfer learning of functional transcriptional networks. Proc Natl Acad Sci U S A 121, e2312942121. https://doi.org/10.1073/pnas.2312942121 (2024).
-
Marazzi, L., Shah, M., Balakrishnan, S., Patil, A. & Vera-Licona, P. NETISCE: a network-based tool for cell fate reprogramming. NPJ Syst Biol Appl 8, 21. https://doi.org/10.1038/s41540-022-00231-y (2022).
-
Zañudo, J. G. & Albert, R. Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput Biol 11, e1004193. https://doi.org/10.1371/journal.pcbi.1004193 (2015).
-
Kim, J., Park, S.-M. & Cho, K.-H. Discovery of a kernel for controlling biomolecular regulatory networks. Sci. Rep. 3, 2223. https://doi.org/10.1038/srep02223 (2013).
-
Liu, Y. Y., Slotine, J. J. & Barabási, A. L. Controllability of complex networks. Nature 473, 167–173. https://doi.org/10.1038/nature10011 (2011).
-
Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol Cell 58, 610–620. https://doi.org/10.1016/j.molcel.2015.04.005 (2015).
-
Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6, 377–382. https://doi.org/10.1038/nmeth.1315 (2009).
-
Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res 25, 1491–1498. https://doi.org/10.1101/gr.190595.115 (2015).
-
Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science https://doi.org/10.1126/science.aar3131 (2018).
-
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310. https://doi.org/10.1002/aja.1002030302 (1995).
-
Kim, J. T., Jakobsen, S., Natarajan, K. N. & Won, K. J. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data. Nucleic Acids Res. 49, e1. https://doi.org/10.1093/nar/gkaa1014 (2021).
-
Shen, W. K. et al. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 51, D39-d45. https://doi.org/10.1093/nar/gkac907 (2023).
-
Zhang, J. et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat. Cell Biol. 8, 1114–1123. https://doi.org/10.1038/ncb1481 (2006).
-
Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765. https://doi.org/10.1016/s0896-6273(03)00497-5 (2003).
-
Lister, J. A. et al. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Dev. Biol. 290, 92–104. https://doi.org/10.1016/j.ydbio.2005.11.014 (2006).
-
Ma, Q., Kintner, C. & Anderson, D. J. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52. https://doi.org/10.1016/s0092-8674(00)81321-5 (1996).
-
Bergsland, M. et al. Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 25, 2453–2464. https://doi.org/10.1101/gad.176008.111 (2011).
-
Elms, P., Siggers, P., Napper, D., Greenfield, A. & Arkell, R. Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Dev Biol 264, 391–406. https://doi.org/10.1016/j.ydbio.2003.09.005 (2003).
-
Kim, Y. I., O’Rourke, R. & Sagerström, C. G. scMultiome analysis identifies embryonic hindbrain progenitors with mixed rhombomere identities. bioRxiv https://doi.org/10.1101/2023.01.27.525932 (2023).
-
Marquardt, T. et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43–55. https://doi.org/10.1016/s0092-8674(01)00295-1 (2001).
-
Brugmann, S. A., Pandur, P. D., Kenyon, K. L., Pignoni, F. & Moody, S. A. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 131, 5871–5881. https://doi.org/10.1242/dev.01516 (2004).
-
Hulander, M. et al. Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130, 2013–2025. https://doi.org/10.1242/dev.00376 (2003).
-
Lu, Q. R. et al. Sonic hedgehog–regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329. https://doi.org/10.1016/s0896-6273(00)80897-1 (2000).
-
Yelon, D. et al. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127, 2573–2582. https://doi.org/10.1242/dev.127.12.2573 (2000).
-
Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat Rev Genet 5, 101–113. https://doi.org/10.1038/nrg1272 (2004).
-
Jeong, H., Mason, S. P., Barabási, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42. https://doi.org/10.1038/35075138 (2001).
-
Jacob, R., Harikrishnan, K. P., Misra, R. & Ambika, G. Measure for degree heterogeneity in complex networks and its application to recurrence network analysis. R Soc Open Sci 4, 160757. https://doi.org/10.1098/rsos.160757 (2017).
-
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559. https://doi.org/10.1186/1471-2105-9-559 (2008).
-
Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161. https://doi.org/10.1093/bioinformatics/bty916 (2019).
-
Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495. https://doi.org/10.1038/s41586-019-0933-9 (2019).
-
Pósfai, M., Liu, Y. Y., Slotine, J. J. & Barabási, A. L. Effect of correlations on network controllability. Sci Rep 3, 1067. https://doi.org/10.1038/srep01067 (2013).
-
Peter, I. S. & Davidson, E. H. Assessing regulatory information in developmental gene regulatory networks. Proc Natl Acad Sci U S A 114, 5862–5869. https://doi.org/10.1073/pnas.1610616114 (2017).
-
Loh, K. M., Lim, B. & Ang, L. T. Ex uno plures: molecular designs for embryonic pluripotency. Physiol Rev 95, 245–295. https://doi.org/10.1152/physrev.00001.2014 (2015).
-
Li, M. & Izpisua Belmonte, J. C. Deconstructing the pluripotency gene regulatory network. Nat. Cell Biol. 20, 382–392. https://doi.org/10.1038/s41556-018-0067-6 (2018).
-
Jang, S. et al. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. Elife https://doi.org/10.7554/eLife.20487 (2017).
-
Ahmad, O. U., Shabbir, M. & Abbas, W. 2023 62nd IEEE Conference on Decision and Control (CDC), 2439–2444 (IEEE, 2023).
-
Singh, A., Chakraborty, S. & Chowdhury, R. A dual physics-informed neural network for topology optimization. arXiv preprint arXiv:2410.14342 (2024).
-
Zhou, M. et al. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events. PLoS ONE 7, e40649. https://doi.org/10.1371/journal.pone.0040649 (2012).
-
Shankaran, S. S. et al. Completing the set of h/E(spl) cyclic genes in zebrafish: her12 and her15 reveal novel modes of expression and contribute to the segmentation clock. Dev. Biol. 304, 615–632. https://doi.org/10.1016/j.ydbio.2007.01.004 (2007).
-
Kuretani, A., Yamamoto, T., Taira, M. & Michiue, T. Evolution of hes gene family in vertebrates: the hes5 cluster genes have specifically increased in frogs. BMC Ecol. Evol. 21, 147. https://doi.org/10.1186/s12862-021-01879-6 (2021).
-
Mußmann, C., Hübner, R., Trilck, M., Rolfs, A. & Frech, M. J. HES5 is a key mediator of Wnt-3a-induced neuronal differentiation. Stem Cells Dev. 23, 1328–1339. https://doi.org/10.1089/scd.2013.0557 (2014).
-
Voutyraki, C. et al. Repression of differentiation genes by Hes transcription factors fuels neural tumour growth in Drosophila. Int. J. Dev. Biol. 66, 211–222. https://doi.org/10.1387/ijdb.210187cd (2022).
-
Qu, Q. & Shi, Y. Neural stem cells in the developing and adult brains. J. Cell Physiol. 221, 5–9. https://doi.org/10.1002/jcp.21862 (2009).
-
Liu, J. et al. Hes1/Hes5 gene inhibits differentiation via down-regulating Hash1 and promotes proliferation in cervical carcinoma cells. Int. J. Gynecol. Cancer 20, 1109–1116. https://doi.org/10.1111/igc.0b013e3181ea74ad (2010).
-
Murata, A. & Hayashi, S. Notch-mediated cell adhesion. Biology (Basel) https://doi.org/10.3390/biology5010005 (2016).
-
Zhou, B. et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct. Target Ther. 7, 95. https://doi.org/10.1038/s41392-022-00934-y (2022).
-
Sachan, N., Sharma, V., Mutsuddi, M. & Mukherjee, A. Notch signalling: multifaceted role in development and disease. Febs j. 291, 3030–3059. https://doi.org/10.1111/febs.16815 (2024).
-
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214. https://doi.org/10.1016/j.cell.2015.05.002 (2015).
-
Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).
-
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-97. https://doi.org/10.1093/nar/gkw377 (2016).
-
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128. https://doi.org/10.1186/1471-2105-14-128 (2013).
-
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672-d677. https://doi.org/10.1093/nar/gkae909 (2025).
-
Agrawal, A. et al. WikiPathways 2024: next generation pathway database. Nucleic Acids Res. 52, D679-d689. https://doi.org/10.1093/nar/gkad960 (2024).
