Controllability of the gene regulatory network in zebrafish embryogenesis

controllability-of-the-gene-regulatory-network-in-zebrafish-embryogenesis
Controllability of the gene regulatory network in zebrafish embryogenesis

References

  1. Jaeger, J. et al. Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–371. https://doi.org/10.1038/nature02678 (2004).

    Google Scholar 

  2. Remeseiro, S., Hörnblad, A. & Spitz, F. Gene regulation during development in the light of topologically associating domains. Wiley Interdiscip. Rev. Dev. Biol. 5, 169–185. https://doi.org/10.1002/wdev.218 (2016).

    Google Scholar 

  3. Ben-Tabou de-Leon, S. & Davidson, E. H. Gene regulation: gene control network in development. Annu Rev Biophys Biomol Struct 36, 191. https://doi.org/10.1146/annurev.biophys.35.040405.102002 (2007).

    Google Scholar 

  4. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800. https://doi.org/10.1126/science.1113832 (2006).

    Google Scholar 

  5. Macneil, L. T. & Walhout, A. J. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res 21, 645–657. https://doi.org/10.1101/gr.097378.109 (2011).

    Google Scholar 

  6. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664. https://doi.org/10.1126/science.1069492 (2002).

    Google Scholar 

  7. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676. https://doi.org/10.1016/j.cell.2006.07.024 (2006).

    Google Scholar 

  8. Wytock, T. P. & Motter, A. E. Cell reprogramming design by transfer learning of functional transcriptional networks. Proc Natl Acad Sci U S A 121, e2312942121. https://doi.org/10.1073/pnas.2312942121 (2024).

    Google Scholar 

  9. Marazzi, L., Shah, M., Balakrishnan, S., Patil, A. & Vera-Licona, P. NETISCE: a network-based tool for cell fate reprogramming. NPJ Syst Biol Appl 8, 21. https://doi.org/10.1038/s41540-022-00231-y (2022).

    Google Scholar 

  10. Zañudo, J. G. & Albert, R. Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput Biol 11, e1004193. https://doi.org/10.1371/journal.pcbi.1004193 (2015).

    Google Scholar 

  11. Kim, J., Park, S.-M. & Cho, K.-H. Discovery of a kernel for controlling biomolecular regulatory networks. Sci. Rep. 3, 2223. https://doi.org/10.1038/srep02223 (2013).

    Google Scholar 

  12. Liu, Y. Y., Slotine, J. J. & Barabási, A. L. Controllability of complex networks. Nature 473, 167–173. https://doi.org/10.1038/nature10011 (2011).

    Google Scholar 

  13. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol Cell 58, 610–620. https://doi.org/10.1016/j.molcel.2015.04.005 (2015).

    Google Scholar 

  14. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6, 377–382. https://doi.org/10.1038/nmeth.1315 (2009).

    Google Scholar 

  15. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res 25, 1491–1498. https://doi.org/10.1101/gr.190595.115 (2015).

    Google Scholar 

  16. Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science https://doi.org/10.1126/science.aar3131 (2018).

    Google Scholar 

  17. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310. https://doi.org/10.1002/aja.1002030302 (1995).

    Google Scholar 

  18. Kim, J. T., Jakobsen, S., Natarajan, K. N. & Won, K. J. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data. Nucleic Acids Res. 49, e1. https://doi.org/10.1093/nar/gkaa1014 (2021).

    Google Scholar 

  19. Shen, W. K. et al. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 51, D39-d45. https://doi.org/10.1093/nar/gkac907 (2023).

    Google Scholar 

  20. Zhang, J. et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat. Cell Biol. 8, 1114–1123. https://doi.org/10.1038/ncb1481 (2006).

    Google Scholar 

  21. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765. https://doi.org/10.1016/s0896-6273(03)00497-5 (2003).

    Google Scholar 

  22. Lister, J. A. et al. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Dev. Biol. 290, 92–104. https://doi.org/10.1016/j.ydbio.2005.11.014 (2006).

    Google Scholar 

  23. Ma, Q., Kintner, C. & Anderson, D. J. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52. https://doi.org/10.1016/s0092-8674(00)81321-5 (1996).

    Google Scholar 

  24. Bergsland, M. et al. Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 25, 2453–2464. https://doi.org/10.1101/gad.176008.111 (2011).

    Google Scholar 

  25. Elms, P., Siggers, P., Napper, D., Greenfield, A. & Arkell, R. Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Dev Biol 264, 391–406. https://doi.org/10.1016/j.ydbio.2003.09.005 (2003).

    Google Scholar 

  26. Kim, Y. I., O’Rourke, R. & Sagerström, C. G. scMultiome analysis identifies embryonic hindbrain progenitors with mixed rhombomere identities. bioRxiv https://doi.org/10.1101/2023.01.27.525932 (2023).

    Google Scholar 

  27. Marquardt, T. et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43–55. https://doi.org/10.1016/s0092-8674(01)00295-1 (2001).

    Google Scholar 

  28. Brugmann, S. A., Pandur, P. D., Kenyon, K. L., Pignoni, F. & Moody, S. A. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 131, 5871–5881. https://doi.org/10.1242/dev.01516 (2004).

    Google Scholar 

  29. Hulander, M. et al. Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130, 2013–2025. https://doi.org/10.1242/dev.00376 (2003).

    Google Scholar 

  30. Lu, Q. R. et al. Sonic hedgehog–regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329. https://doi.org/10.1016/s0896-6273(00)80897-1 (2000).

    Google Scholar 

  31. Yelon, D. et al. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127, 2573–2582. https://doi.org/10.1242/dev.127.12.2573 (2000).

    Google Scholar 

  32. Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat Rev Genet 5, 101–113. https://doi.org/10.1038/nrg1272 (2004).

    Google Scholar 

  33. Jeong, H., Mason, S. P., Barabási, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42. https://doi.org/10.1038/35075138 (2001).

    Google Scholar 

  34. Jacob, R., Harikrishnan, K. P., Misra, R. & Ambika, G. Measure for degree heterogeneity in complex networks and its application to recurrence network analysis. R Soc Open Sci 4, 160757. https://doi.org/10.1098/rsos.160757 (2017).

    Google Scholar 

  35. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559. https://doi.org/10.1186/1471-2105-9-559 (2008).

    Google Scholar 

  36. Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161. https://doi.org/10.1093/bioinformatics/bty916 (2019).

    Google Scholar 

  37. Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495. https://doi.org/10.1038/s41586-019-0933-9 (2019).

    Google Scholar 

  38. Pósfai, M., Liu, Y. Y., Slotine, J. J. & Barabási, A. L. Effect of correlations on network controllability. Sci Rep 3, 1067. https://doi.org/10.1038/srep01067 (2013).

    Google Scholar 

  39. Peter, I. S. & Davidson, E. H. Assessing regulatory information in developmental gene regulatory networks. Proc Natl Acad Sci U S A 114, 5862–5869. https://doi.org/10.1073/pnas.1610616114 (2017).

    Google Scholar 

  40. Loh, K. M., Lim, B. & Ang, L. T. Ex uno plures: molecular designs for embryonic pluripotency. Physiol Rev 95, 245–295. https://doi.org/10.1152/physrev.00001.2014 (2015).

    Google Scholar 

  41. Li, M. & Izpisua Belmonte, J. C. Deconstructing the pluripotency gene regulatory network. Nat. Cell Biol. 20, 382–392. https://doi.org/10.1038/s41556-018-0067-6 (2018).

    Google Scholar 

  42. Jang, S. et al. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. Elife https://doi.org/10.7554/eLife.20487 (2017).

    Google Scholar 

  43. Ahmad, O. U., Shabbir, M. & Abbas, W. 2023 62nd IEEE Conference on Decision and Control (CDC), 2439–2444 (IEEE, 2023).

  44. Singh, A., Chakraborty, S. & Chowdhury, R. A dual physics-informed neural network for topology optimization. arXiv preprint arXiv:2410.14342 (2024).

  45. Zhou, M. et al. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events. PLoS ONE 7, e40649. https://doi.org/10.1371/journal.pone.0040649 (2012).

    Google Scholar 

  46. Shankaran, S. S. et al. Completing the set of h/E(spl) cyclic genes in zebrafish: her12 and her15 reveal novel modes of expression and contribute to the segmentation clock. Dev. Biol. 304, 615–632. https://doi.org/10.1016/j.ydbio.2007.01.004 (2007).

    Google Scholar 

  47. Kuretani, A., Yamamoto, T., Taira, M. & Michiue, T. Evolution of hes gene family in vertebrates: the hes5 cluster genes have specifically increased in frogs. BMC Ecol. Evol. 21, 147. https://doi.org/10.1186/s12862-021-01879-6 (2021).

    Google Scholar 

  48. Mußmann, C., Hübner, R., Trilck, M., Rolfs, A. & Frech, M. J. HES5 is a key mediator of Wnt-3a-induced neuronal differentiation. Stem Cells Dev. 23, 1328–1339. https://doi.org/10.1089/scd.2013.0557 (2014).

    Google Scholar 

  49. Voutyraki, C. et al. Repression of differentiation genes by Hes transcription factors fuels neural tumour growth in Drosophila. Int. J. Dev. Biol. 66, 211–222. https://doi.org/10.1387/ijdb.210187cd (2022).

    Google Scholar 

  50. Qu, Q. & Shi, Y. Neural stem cells in the developing and adult brains. J. Cell Physiol. 221, 5–9. https://doi.org/10.1002/jcp.21862 (2009).

    Google Scholar 

  51. Liu, J. et al. Hes1/Hes5 gene inhibits differentiation via down-regulating Hash1 and promotes proliferation in cervical carcinoma cells. Int. J. Gynecol. Cancer 20, 1109–1116. https://doi.org/10.1111/igc.0b013e3181ea74ad (2010).

    Google Scholar 

  52. Murata, A. & Hayashi, S. Notch-mediated cell adhesion. Biology (Basel) https://doi.org/10.3390/biology5010005 (2016).

    Google Scholar 

  53. Zhou, B. et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct. Target Ther. 7, 95. https://doi.org/10.1038/s41392-022-00934-y (2022).

    Google Scholar 

  54. Sachan, N., Sharma, V., Mutsuddi, M. & Mukherjee, A. Notch signalling: multifaceted role in development and disease. Febs j. 291, 3030–3059. https://doi.org/10.1111/febs.16815 (2024).

    Google Scholar 

  55. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214. https://doi.org/10.1016/j.cell.2015.05.002 (2015).

    Google Scholar 

  56. Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Google Scholar 

  57. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-97. https://doi.org/10.1093/nar/gkw377 (2016).

    Google Scholar 

  58. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128. https://doi.org/10.1186/1471-2105-14-128 (2013).

    Google Scholar 

  59. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672-d677. https://doi.org/10.1093/nar/gkae909 (2025).

    Google Scholar 

  60. Agrawal, A. et al. WikiPathways 2024: next generation pathway database. Nucleic Acids Res. 52, D679-d689. https://doi.org/10.1093/nar/gkad960 (2024).

    Google Scholar 

Download references