References
-
Van Soest, R. September Aplysina aerophoba. Sponges of the NE Atlantic. Marine Species Identification Portal. (accessed 22 September 2020). https://species-identification.org.
-
Kreuzberg, R. September. Yellow tube sponge: Aplysina aerophoba. Tauchen auf den Kanaren. (accessed 22 September 2020). https://www.tauchen-kanaren.de.
-
Ehrlich, H. et al. Three dimensional Chitin–based scaffolds from verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of Chitin. Int. J. Biol. Macromol. 47, 132–140 (2010).
-
Ehrlich, H. et al. Marine invertebrates of Boka Kotorska Bay unique sources for bioinspired materials science. In (eds Djurović, M., Semenov, A. V., Zonn, I. S. & Kostianoy, A. G.) The Boka Kotorska Bay Environment: The Handbook of Environmental Chemistry, 313–334 (Springer, 2016).
-
Bechmann, N. et al. Anti–tumorigenic and anti–metastatic activity of the sponge–derived marine drugs Aeroplysinin–1 and Isofistularin–3 against pheochromocytoma in vitro. Mar. Drugs. 16, 172 (2018).
-
Ebel, R., Brenzinger, M., Kunze, A., Gross, H. J. & Proksch, P. Wound activation of protoxins in marine sponge Aplysina aerophoba. J. Chem. Ecol. 23, 1451–1462 (1997).
-
Thoms, C., Wolff, M., Padmakumar, K., Ebel, R. & Proksch, P. Chemical defense of mediterranean sponges Aplysina Cavernicola and Aplysina aerophoba. Z. Naturforsch C. 59, 113–122 (2004).
-
Orfanoudaki, M. et al. Cytotoxic compounds of two demosponges (Aplysina aerophoba and Spongia sp.) from the Aegean sea. Biomolecules 11, 723 (2021).
-
Koulman, A. et al. Cytotoxicity and mode of action of aeroplysinin-1 and a related dienone from the sponge Aplysina aerophoba. J. Nat. Prod. 59, 591–594 (1996).
-
Binnewerg, B. et al. Marine biomaterials: biomimetic and Pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Mater. Sci. Eng. C 109, 110566 (2020).
-
Çankırılıgil, E. & Berik, N. A preliminary study on the antioxidant activity and amino acid composition of marine sponge Aplysina aerophoba collected from Northeastern Aegean Sea. In 5th National Marine Sciences Conference, Turkey (2022).
-
Carnovali, M. et al. Aerophobin-1 from the marine sponge Aplysina aerophoba modulates osteogenesis in zebrafish larvae. Mar. Drugs. 20, 135 (2022).
-
Kokova, V. et al. Structural characterization, and in vivo anti-inflammatory effect of alginate from Cystoseira crinita (Desf.) Borry harvested in the Bulgarian Black Sea. Mar. Drugs 21, 245 (2023).
-
Shin, H. J., Lee, M. A., Lee, H. S. & Heo, C. S. Thiolactones and ∆8,9-pregnene steroids from the marine-derived fungus Meira sp. 1210CH-42 and their α-glucosidase inhibitory activity. Mar. Drugs. 21, 246 (2023).
-
Khiari, Z. Recent developments in bio-ink formulations using marine-derived biomaterials for three-dimensional (3D) Bioprinting. Mar. Drugs. 22, 134 (2024).
-
Cui, J. et al. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci. Rep. 6, 27928 (2016).
-
Cui, J. & Jia, S. Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coord. Chem. Rev. 352, 249–263 (2017).
-
Wen, H. et al. Bimetal based inorganic–carbonic anhydrase hybrid hydrogel membrane for CO₂ capture. J CO₂ Util. 39, 101171 (2020).
-
Hussain, I., Singh, N. B., Singh, A., Singh, H. & Singh, S. C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 545–560 (2016).
-
Demirbas, A. Comparison study of synthesized red (or blood) orange peels and juice extract-nanoflowers and their antimicrobial properties on fish pathogen (Yersinia ruckeri). Indian J. Microbiol. 61, 324–330 (2021).
-
Ekennia, A. C. et al. Green synthesis of biogenic zinc oxide Nanoflower as dual agent for photodegradation of an organic dye and tyrosinase inhibitor. J. Inorg. Organomet. Polym. Mater. 31, 886–897 (2020).
-
Al Sharie, A. H. et al. Green synthesis of zinc oxide nanoflowers using Hypericum triquetrifolium extract: characterization, antibacterial activity and cytotoxicity against lung cancer A549 cells. Appl. Organomet. Chem. 34, e5667 (2020).
-
Karsli, B., Uras, I. S., Konuklugil, B. & Demirbas, A. Synthesis of Axinyssa digitata extract directed hybrid Nanoflower and investigation of its antimicrobial activity. IEEE Trans. Nanobiosci. 22, 523–528 (2023).
-
Shahabadi, N. et al. Green synthesis of chloroxine-conjugated silver nanoflowers: promising antimicrobial activity and in vivo cutaneous wound healing effects. J. Environ. Chem. Eng. 9, 105215 (2021).
-
Uras, I. S., Karsli, B., Konuklugil, B., Ocsoy, I. & Demirbas, A. Organic–inorganic nanocomposites of Aspergillus terreus extract and its compounds with antimicrobial properties. Sustainability 15, 4638 (2023).
-
Demirbas, A. et al. Usnea Antarctica and Usnea subfloridana incorporated hybrid nanoflowers with their intrinsic catalytic and antimicrobial activities. ChemistrySelect 7, e202202715 (2022).
-
Koca, F. D., Muhy, H. M. & Halici, M. G. Catalytic and antioxidant activity of Desmarestia menziesii algae extract based organic@inorganic hybrid nanoflowers. J. Inorg. Organomet. Polym. Mater. 34, 1282–1292 (2024).
-
González-Ballesteros, N., González-Rodríguez, J. B., Rodríguez-Argüelles, M. C. & Lastra, M. J. P. New application of two Antarctic macroalgae Palmaria decipiens and Desmarestia menziesii in the synthesis of gold and silver nanoparticles. Polar Sci. 15, 49–54 (2018).
-
Gudkov, S. V., Burmistrov, D. E., Fomina, P. A., Validov, S. Z. & Kozlov, V. A. Antibacterial properties of copper oxide nanoparticles (Review). Int. J. Mol. Sci. 25, 11563 (2024).
-
Wei, Q., Pan, Y., Zhang, Z., Yan, S. & Li, Z. Copper-based nanomaterials for biomedical applications. Chem. Eng. J. 483, 149040 (2024).
-
Wang, Y. et al. Engineering copper and copper-based materials for a post-antibiotic era. Front. Bioeng. Biotechnol. 13, 1644362 (2025).
-
Karslı, B. Antibacterial and antioxidant activity of pulp, Peel and leaves of Feijoa sellowiana: effect of extraction techniques, solvents and concentration. Food Health. 7, 21–30 (2021).
-
Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966).
-
Ildiz, N. et al. Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb. Technol. 102, 60–66 (2017).
-
Güven, O. C., Kar, M. & Koca, F. D. Synthesis of Cherry stalk extract based organic@inorganic hybrid nanoflowers as a novel Fenton reagent: evaluation of their antioxidant, catalytic, and antimicrobial activities. J. Inorg. Organomet. Polym. Mater. 32, 1026–1032 (2022).
-
Demirbas, A. et al. Preparation of biocompatible and stable iron oxide nanoparticles using anthocyanin integrated hydrothermal method and their antimicrobial and antioxidant properties. Mater. Res. Express. 6, 125011 (2019).
-
Xiao, F., Xu, T., Lu, B. & Liu, R. Guidelines for antioxidant assays for food components. Food Front. 1, 60–69 (2020).
-
Li, Y., Wu, H. & Su, Z. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coord. Chem. Rev. 416, 213342 (2020).
-
Chen, J. et al. Organic–inorganic hybrid nanoflowers: A comprehensive review of current trends, advances, and future perspectives. Coord. Chem. Rev. 489, 215191 (2023).
-
Alhayali, N. I., Özpozan, N. K., Dayan, S. & Özdemir, N. Somtürk Yılmaz, B. Catalase/Fe₃O₄@Cu²⁺ hybrid biocatalytic nanoflowers fabrication and efficiency in the reduction of organic pollutants. Polyhedron 194, 114888 (2021).
-
Celik, C., Ildiz, N. & Ocsoy, I. Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Sci. Rep. 10, 2903 (2020).
-
Qiao, X. et al. A hybrid of ultrathin metal–organic framework sheet and ultrasmall copper nanoparticles for detection of hydrogen peroxide with enhanced activity. Anal. Bioanal Chem. 413, 839–851 (2021).
-
Xu, L. et al. In situ generation of ultrasmall sized and highly dispersed CuO nanoparticles embedded in silica matrix and their catalytic application. New. J. Chem. 43, 520–526 (2019).
-
Swaminathan, S., Cavalli, R. & Trotta, F. Cyclodextrin-based nanosponges: A versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev. Nanomed. Nanobiotechnol. 8, 579–601 (2016).
-
Vinay, S. P., Udayabhanu, Nagaraju, G., Chandrappa, C. P. & Chandrasekhar, N. A novel, green, rapid, nonchemical route hydrothermal assisted biosynthesis of ag nanomaterial by Blushwood berry extract and evaluation of its diverse applications. Appl. Nanosci. 10, 3341–3351 (2020).
-
Vinay, S. P., Sumedha, H. N., Shashank, M., Nagaraju, G. & Chandrasekhar, N. In-vitro antibacterial, antioxidant and cytotoxic potential of gold nanoparticles synthesized using novel Elaeocarpus Ganitrus seeds extract. J. Sci. Adv. Mater. Devices. 6, 127–133 (2021).
-
Deze, E. G., Bareka, M. D., Karousos, D. S., SapalidisAA & Favvas, E. P. Mesoporous silica based copper catalytic materials for potential DeNOx application: synthesis and characterization. Mater. Today Proc. 54, 1–6 (2022).
-
Utzeri, G., Matias, P. M. C., Murtinho, D. & Valente, A. J. M. Cyclodextrin-based nanosponges: overview and opportunities. Front. Chem. 10, 859406 (2022).
-
Sumra, A. A. et al. Biogenic synthesis, characterization, and in vitro biological evaluation of silver nanoparticles using Cleome brachycarpa. Plants 12, 1578 (2023).
-
Eskikaya, O. et al. A comparative study of iron Nanoflower and nanocube in terms of antibacterial properties. Appl. Nanosci. 13, 5421–5433 (2023).
-
Altinkaynak, C. et al. Anti-microbial, anti-oxidant and wound healing capabilities of Aloe vera-incorporated hybrid nanoflowers. J. Biosci. Bioeng. 135, 321–330 (2023).
-
Özdemir, N., Altinkaynak, C., Türk, M., Geçili, F. & Tavlaşoğlu, S. Amino acid-metal phosphate hybrid nanoflowers (AaHNFs): their preparation, characterization and anti-oxidant capacities. Polym. Bull. 79, 9697–9716 (2022).
-
Andrés, C. M. C., de la Pérez, J. M., Juan, C. A., Plou, F. J. & Pérez-Lebeña, E. Polyphenols as antioxidant/pro-oxidant compounds and donors of reducing species: relationship with human antioxidant metabolism. Processes 11, 2771 (2023).
-
Ahmed, S., Ahmad, M., Swami, B. L. & Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 7, 17–28 (2016).
-
Altinkaynak, C. et al. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their antimicrobial activity. Derim 36, 159–167 (2019).
-
Kilic, A. B. et al. A new approach for green synthesis and characterization of Artemisia L. genotype extracts–Cu²⁺ nanocomplexes (nanoflower) and their effective antimicrobial activity. Medicine 9, 191–196 (2020).
-
Alarifi, S., Ali, D., Verma, A., Alakhtani, S. & Ali, B. A. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int. J. Toxicol. 32, 296–307 (2013).
-
Tegenaw, A., Sorial, G. A., Sahle-Demessie, E. & Han, C. Role of water chemistry on stability, aggregation, and dissolution of uncoated and carbon-coated copper nanoparticles. Environ. Res. 187, 109700 (2020).
-
Gunawan, C., Teoh, W. Y., Marquis, C. P. & Amal, R. Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano. 5, 7214–7225 (2011).
-
Tortella, G. et al. Copper nanoparticles as a potential emerging pollutant: divergent effects in the agriculture, risk–benefit balance and integrated strategies for its use. Emerg. Contaminants. 10, 100352 (2024).
