Copper doped hybrid nanosponges functionalized with Aplysina aerophoba extract for enhanced bioactive performance

copper-doped-hybrid-nanosponges-functionalized-with-aplysina-aerophoba-extract-for-enhanced-bioactive-performance
Copper doped hybrid nanosponges functionalized with Aplysina aerophoba extract for enhanced bioactive performance

References

  1. Van Soest, R. September Aplysina aerophoba. Sponges of the NE Atlantic. Marine Species Identification Portal. (accessed 22 September 2020). https://species-identification.org.

  2. Kreuzberg, R. September. Yellow tube sponge: Aplysina aerophoba. Tauchen auf den Kanaren. (accessed 22 September 2020). https://www.tauchen-kanaren.de.

  3. Ehrlich, H. et al. Three dimensional Chitin–based scaffolds from verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of Chitin. Int. J. Biol. Macromol. 47, 132–140 (2010).

    Google Scholar 

  4. Ehrlich, H. et al. Marine invertebrates of Boka Kotorska Bay unique sources for bioinspired materials science. In (eds Djurović, M., Semenov, A. V., Zonn, I. S. & Kostianoy, A. G.) The Boka Kotorska Bay Environment: The Handbook of Environmental Chemistry, 313–334 (Springer, 2016).

  5. Bechmann, N. et al. Anti–tumorigenic and anti–metastatic activity of the sponge–derived marine drugs Aeroplysinin–1 and Isofistularin–3 against pheochromocytoma in vitro. Mar. Drugs. 16, 172 (2018).

    Google Scholar 

  6. Ebel, R., Brenzinger, M., Kunze, A., Gross, H. J. & Proksch, P. Wound activation of protoxins in marine sponge Aplysina aerophoba. J. Chem. Ecol. 23, 1451–1462 (1997).

    Google Scholar 

  7. Thoms, C., Wolff, M., Padmakumar, K., Ebel, R. & Proksch, P. Chemical defense of mediterranean sponges Aplysina Cavernicola and Aplysina aerophoba. Z. Naturforsch C. 59, 113–122 (2004).

    Google Scholar 

  8. Orfanoudaki, M. et al. Cytotoxic compounds of two demosponges (Aplysina aerophoba and Spongia sp.) from the Aegean sea. Biomolecules 11, 723 (2021).

    Google Scholar 

  9. Koulman, A. et al. Cytotoxicity and mode of action of aeroplysinin-1 and a related dienone from the sponge Aplysina aerophoba. J. Nat. Prod. 59, 591–594 (1996).

    Google Scholar 

  10. Binnewerg, B. et al. Marine biomaterials: biomimetic and Pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Mater. Sci. Eng. C 109, 110566 (2020).

    Google Scholar 

  11. Çankırılıgil, E. & Berik, N. A preliminary study on the antioxidant activity and amino acid composition of marine sponge Aplysina aerophoba collected from Northeastern Aegean Sea. In 5th National Marine Sciences Conference, Turkey (2022).

  12. Carnovali, M. et al. Aerophobin-1 from the marine sponge Aplysina aerophoba modulates osteogenesis in zebrafish larvae. Mar. Drugs. 20, 135 (2022).

    Google Scholar 

  13. Kokova, V. et al. Structural characterization, and in vivo anti-inflammatory effect of alginate from Cystoseira crinita (Desf.) Borry harvested in the Bulgarian Black Sea. Mar. Drugs 21, 245 (2023).

  14. Shin, H. J., Lee, M. A., Lee, H. S. & Heo, C. S. Thiolactones and ∆8,9-pregnene steroids from the marine-derived fungus Meira sp. 1210CH-42 and their α-glucosidase inhibitory activity. Mar. Drugs. 21, 246 (2023).

    Google Scholar 

  15. Khiari, Z. Recent developments in bio-ink formulations using marine-derived biomaterials for three-dimensional (3D) Bioprinting. Mar. Drugs. 22, 134 (2024).

    Google Scholar 

  16. Cui, J. et al. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci. Rep. 6, 27928 (2016).

    Google Scholar 

  17. Cui, J. & Jia, S. Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coord. Chem. Rev. 352, 249–263 (2017).

    Google Scholar 

  18. Wen, H. et al. Bimetal based inorganic–carbonic anhydrase hybrid hydrogel membrane for CO₂ capture. J CO₂ Util. 39, 101171 (2020).

    Google Scholar 

  19. Hussain, I., Singh, N. B., Singh, A., Singh, H. & Singh, S. C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 545–560 (2016).

    Google Scholar 

  20. Demirbas, A. Comparison study of synthesized red (or blood) orange peels and juice extract-nanoflowers and their antimicrobial properties on fish pathogen (Yersinia ruckeri). Indian J. Microbiol. 61, 324–330 (2021).

    Google Scholar 

  21. Ekennia, A. C. et al. Green synthesis of biogenic zinc oxide Nanoflower as dual agent for photodegradation of an organic dye and tyrosinase inhibitor. J. Inorg. Organomet. Polym. Mater. 31, 886–897 (2020).

    Google Scholar 

  22. Al Sharie, A. H. et al. Green synthesis of zinc oxide nanoflowers using Hypericum triquetrifolium extract: characterization, antibacterial activity and cytotoxicity against lung cancer A549 cells. Appl. Organomet. Chem. 34, e5667 (2020).

    Google Scholar 

  23. Karsli, B., Uras, I. S., Konuklugil, B. & Demirbas, A. Synthesis of Axinyssa digitata extract directed hybrid Nanoflower and investigation of its antimicrobial activity. IEEE Trans. Nanobiosci. 22, 523–528 (2023).

    Google Scholar 

  24. Shahabadi, N. et al. Green synthesis of chloroxine-conjugated silver nanoflowers: promising antimicrobial activity and in vivo cutaneous wound healing effects. J. Environ. Chem. Eng. 9, 105215 (2021).

    Google Scholar 

  25. Uras, I. S., Karsli, B., Konuklugil, B., Ocsoy, I. & Demirbas, A. Organic–inorganic nanocomposites of Aspergillus terreus extract and its compounds with antimicrobial properties. Sustainability 15, 4638 (2023).

    Google Scholar 

  26. Demirbas, A. et al. Usnea Antarctica and Usnea subfloridana incorporated hybrid nanoflowers with their intrinsic catalytic and antimicrobial activities. ChemistrySelect 7, e202202715 (2022).

    Google Scholar 

  27. Koca, F. D., Muhy, H. M. & Halici, M. G. Catalytic and antioxidant activity of Desmarestia menziesii algae extract based organic@inorganic hybrid nanoflowers. J. Inorg. Organomet. Polym. Mater. 34, 1282–1292 (2024).

    Google Scholar 

  28. González-Ballesteros, N., González-Rodríguez, J. B., Rodríguez-Argüelles, M. C. & Lastra, M. J. P. New application of two Antarctic macroalgae Palmaria decipiens and Desmarestia menziesii in the synthesis of gold and silver nanoparticles. Polar Sci. 15, 49–54 (2018).

    Google Scholar 

  29. Gudkov, S. V., Burmistrov, D. E., Fomina, P. A., Validov, S. Z. & Kozlov, V. A. Antibacterial properties of copper oxide nanoparticles (Review). Int. J. Mol. Sci. 25, 11563 (2024).

    Google Scholar 

  30. Wei, Q., Pan, Y., Zhang, Z., Yan, S. & Li, Z. Copper-based nanomaterials for biomedical applications. Chem. Eng. J. 483, 149040 (2024).

    Google Scholar 

  31. Wang, Y. et al. Engineering copper and copper-based materials for a post-antibiotic era. Front. Bioeng. Biotechnol. 13, 1644362 (2025).

    Google Scholar 

  32. Karslı, B. Antibacterial and antioxidant activity of pulp, Peel and leaves of Feijoa sellowiana: effect of extraction techniques, solvents and concentration. Food Health. 7, 21–30 (2021).

    Google Scholar 

  33. Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966).

    Google Scholar 

  34. Ildiz, N. et al. Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb. Technol. 102, 60–66 (2017).

    Google Scholar 

  35. Güven, O. C., Kar, M. & Koca, F. D. Synthesis of Cherry stalk extract based organic@inorganic hybrid nanoflowers as a novel Fenton reagent: evaluation of their antioxidant, catalytic, and antimicrobial activities. J. Inorg. Organomet. Polym. Mater. 32, 1026–1032 (2022).

    Google Scholar 

  36. Demirbas, A. et al. Preparation of biocompatible and stable iron oxide nanoparticles using anthocyanin integrated hydrothermal method and their antimicrobial and antioxidant properties. Mater. Res. Express. 6, 125011 (2019).

    Google Scholar 

  37. Xiao, F., Xu, T., Lu, B. & Liu, R. Guidelines for antioxidant assays for food components. Food Front. 1, 60–69 (2020).

    Google Scholar 

  38. Li, Y., Wu, H. & Su, Z. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coord. Chem. Rev. 416, 213342 (2020).

    Google Scholar 

  39. Chen, J. et al. Organic–inorganic hybrid nanoflowers: A comprehensive review of current trends, advances, and future perspectives. Coord. Chem. Rev. 489, 215191 (2023).

    Google Scholar 

  40. Alhayali, N. I., Özpozan, N. K., Dayan, S. & Özdemir, N. Somtürk Yılmaz, B. Catalase/Fe₃O₄@Cu²⁺ hybrid biocatalytic nanoflowers fabrication and efficiency in the reduction of organic pollutants. Polyhedron 194, 114888 (2021).

    Google Scholar 

  41. Celik, C., Ildiz, N. & Ocsoy, I. Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Sci. Rep. 10, 2903 (2020).

    Google Scholar 

  42. Qiao, X. et al. A hybrid of ultrathin metal–organic framework sheet and ultrasmall copper nanoparticles for detection of hydrogen peroxide with enhanced activity. Anal. Bioanal Chem. 413, 839–851 (2021).

    Google Scholar 

  43. Xu, L. et al. In situ generation of ultrasmall sized and highly dispersed CuO nanoparticles embedded in silica matrix and their catalytic application. New. J. Chem. 43, 520–526 (2019).

    Google Scholar 

  44. Swaminathan, S., Cavalli, R. & Trotta, F. Cyclodextrin-based nanosponges: A versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev. Nanomed. Nanobiotechnol. 8, 579–601 (2016).

    Google Scholar 

  45. Vinay, S. P., Udayabhanu, Nagaraju, G., Chandrappa, C. P. & Chandrasekhar, N. A novel, green, rapid, nonchemical route hydrothermal assisted biosynthesis of ag nanomaterial by Blushwood berry extract and evaluation of its diverse applications. Appl. Nanosci. 10, 3341–3351 (2020).

    Google Scholar 

  46. Vinay, S. P., Sumedha, H. N., Shashank, M., Nagaraju, G. & Chandrasekhar, N. In-vitro antibacterial, antioxidant and cytotoxic potential of gold nanoparticles synthesized using novel Elaeocarpus Ganitrus seeds extract. J. Sci. Adv. Mater. Devices. 6, 127–133 (2021).

    Google Scholar 

  47. Deze, E. G., Bareka, M. D., Karousos, D. S., SapalidisAA & Favvas, E. P. Mesoporous silica based copper catalytic materials for potential DeNOx application: synthesis and characterization. Mater. Today Proc. 54, 1–6 (2022).

    Google Scholar 

  48. Utzeri, G., Matias, P. M. C., Murtinho, D. & Valente, A. J. M. Cyclodextrin-based nanosponges: overview and opportunities. Front. Chem. 10, 859406 (2022).

    Google Scholar 

  49. Sumra, A. A. et al. Biogenic synthesis, characterization, and in vitro biological evaluation of silver nanoparticles using Cleome brachycarpa. Plants 12, 1578 (2023).

    Google Scholar 

  50. Eskikaya, O. et al. A comparative study of iron Nanoflower and nanocube in terms of antibacterial properties. Appl. Nanosci. 13, 5421–5433 (2023).

    Google Scholar 

  51. Altinkaynak, C. et al. Anti-microbial, anti-oxidant and wound healing capabilities of Aloe vera-incorporated hybrid nanoflowers. J. Biosci. Bioeng. 135, 321–330 (2023).

    Google Scholar 

  52. Özdemir, N., Altinkaynak, C., Türk, M., Geçili, F. & Tavlaşoğlu, S. Amino acid-metal phosphate hybrid nanoflowers (AaHNFs): their preparation, characterization and anti-oxidant capacities. Polym. Bull. 79, 9697–9716 (2022).

    Google Scholar 

  53. Andrés, C. M. C., de la Pérez, J. M., Juan, C. A., Plou, F. J. & Pérez-Lebeña, E. Polyphenols as antioxidant/pro-oxidant compounds and donors of reducing species: relationship with human antioxidant metabolism. Processes 11, 2771 (2023).

    Google Scholar 

  54. Ahmed, S., Ahmad, M., Swami, B. L. & Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 7, 17–28 (2016).

    Google Scholar 

  55. Altinkaynak, C. et al. Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their antimicrobial activity. Derim 36, 159–167 (2019).

    Google Scholar 

  56. Kilic, A. B. et al. A new approach for green synthesis and characterization of Artemisia L. genotype extracts–Cu²⁺ nanocomplexes (nanoflower) and their effective antimicrobial activity. Medicine 9, 191–196 (2020).

    Google Scholar 

  57. Alarifi, S., Ali, D., Verma, A., Alakhtani, S. & Ali, B. A. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int. J. Toxicol. 32, 296–307 (2013).

    Google Scholar 

  58. Tegenaw, A., Sorial, G. A., Sahle-Demessie, E. & Han, C. Role of water chemistry on stability, aggregation, and dissolution of uncoated and carbon-coated copper nanoparticles. Environ. Res. 187, 109700 (2020).

    Google Scholar 

  59. Gunawan, C., Teoh, W. Y., Marquis, C. P. & Amal, R. Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano. 5, 7214–7225 (2011).

    Google Scholar 

  60. Tortella, G. et al. Copper nanoparticles as a potential emerging pollutant: divergent effects in the agriculture, risk–benefit balance and integrated strategies for its use. Emerg. Contaminants. 10, 100352 (2024).

    Google Scholar 

Download references