References
-
Keshri, S. & Biswas, S. Synthesis, physical properties, and biomedical applications of magnetic nanoparticles: a review. Prog Biomater. 11, 347–372 (2022).
-
Li, Z., Zhang, J., Li, X., Guo, X. & Zhang, Z. Preparation and evaluation of multifunctional autofluorescent magnetic Nanoparticle–Based drug delivery systems against mammary cancer. J. Pharm. Sci. 107, 2694–2701 (2018).
-
Ilosvai, Á. M. et al. Development of Polymer-Encapsulated, Amine-Functionalized zinc ferrite nanoparticles as MRI contrast agents. Int. J. Mol. Sci. 2023. 24, 16203 (2023).
-
Heydari, F. I. et al. Solvothermal synthesis of Polyvinyl pyrrolidone encapsulated, amine-functionalized copper ferrite and its use as a magnetic resonance imaging contrast agent. PLoS One. 20, e0316221 (2025).
-
Gerzsenyi, T. B. et al. A simplified and efficient method for production of manganese ferrite magnetic nanoparticles and their application in DNA isolation. Int. J. Mol. Sci. 24, 2156 (2023).
-
Maniotis, N., Gitsou, M. & Maragakis, M. Conjugating magnetic nanoparticles anisotropy to their dipolar interactions: effect on the hyperthermic losses index via micromagnetic simulations. J. Magn. Magn. Mater. 617, 172843 (2025).
-
Nori, Z. Z. et al. Synthesis and characterization of a new gold-coated magnetic nanoparticle decorated with a thiol-containing dendrimer for targeted drug delivery, hyperthermia treatment and enhancement of MRI contrast agent. J. Drug Deliv Sci. Technol. 81, 104216 (2023).
-
Karakatsanis, A. et al. Superparamagnetic iron oxide nanoparticles as the sole method for Sentinel node biopsy detection in patients with breast cancer. Br. J. Surg. 104, 1675–1685 (2017).
-
Gupta, N., Jain, P., Rana, R. & Shrivastava, S. Current development in synthesis and characterization of nickel ferrite nanoparticle. Mater. Today Proc. 4, 342–349 (2017).
-
Poon, K., Gupta, A., Hawkins, P. M. E. & Singh, G. Core-shell magnetic nanoparticles: Harnessing synergistic effects for MRI and magnetic hyperthermia. Mater. Today Chem. 44, 102533 (2025).
-
Sreelekshmi, D., Adarsh, V. S. & Kumar, R. V. Anticancerous activity of Annona muricata-mediated cerium doped nickel ferrite spinel nanoparticles. Mater. Chem. Phys. 332, 130138 (2025).
-
Zemlianskii, P. V., Kustov, A. L., Timofeeva, M. N. & Kustov, L. M. Microwave irradiation as an instrument for tuning of physicochemical and catalytic properties of MFe2O4 spinels. Chem. Eng. Process. – Process. Intensif. 208, 110138 (2025).
-
Bayrakdar, H., Yalçın, O., Özüm, S. & Cengiz, U. Synthesis and investigation of small g-values for smart spinel ferrite nanoparticles. J. Alloys Compd. 869, 159334 (2021).
-
Reddy, M. P. & Mohamed, A. M. A. One-pot solvothermal synthesis and performance of mesoporous magnetic ferrite MFe2O4 nanospheres. Microporous Mesoporous Mater. 215, 37–45 (2015).
-
Azam, A. Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles. J. Alloys Compd. 540, 145–153 (2012).
-
Ramesh, T. et al. Impact of ultrasonic-assisted co-precipitation synthesis and ultrasonication duration on Cobalt ferrite nanostructures: A comparative study of structural, morphological, optical and magnetic properties. Inorg. Chem. Commun. 174, 114035 (2025).
-
Aoopngan, C. et al. Amine-Functionalized and Hydroxyl-Functionalized magnesium ferrite nanoparticles for congo red adsorption. ACS Appl. Nano Mater. 2, 5329–5341 (2019).
-
Zhu, Y. & Wu, Q. Synthesis of magnetite nanoparticles by precipitation with forced mixing. J. Nanoparticle Res. 1, 393–396 (1999).
-
Zain, U. et al. A comprehensive review on the synthesis of ferrite nanomaterials via bottom-up and top-down approaches advantages, disadvantages, characterizations and computational insights. Coord. Chem. Rev. 520, 216158 (2024).
-
Rane, A. V., Kanny, K., Abitha, V. K. & Thomas, S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synthesis Inorg. Nanomaterials: Adv. Key Technol. (Elsevier), 121–139. https://doi.org/10.1016/B978-0-08-101975-7.00005-1 (2018).
-
Gan, Y. X., Jayatissa, A. H., Yu, Z., Chen, X. & Li, M. Hydrothermal Synthesis of Nanomaterials. J. Nanomater. 8917013 (2020). (2020).
-
Torres-Gómez, N. et al. Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: effect of temperature. J. Nanomater. 7921273 2019 (2019).
-
Mizutani, N., Iwasaki, T., Watano, S., Yanagida, T. & Kawai, T. Size control of magnetite nanoparticles in hydrothermal synthesis by coexistence of lactate and sulfate ions. Curr. Appl. Phys. 10, 801–806 (2010).
-
Ghosh Chaudhuri, R. & Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).
-
Mahdavi, Z. & Rezvani, H. Keshavarz Moraveji, M. Core–shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv. 10, 18280–18295 (2020).
-
Kargar, S., Elhamifar, D. & Zarnegaryan, A. Core–shell structured Fe3O4@SiO2-supported IL/[Mo6O19]: A novel and magnetically recoverable nanocatalyst for the Preparation of biologically active dihydropyrimidinones. J. Phys. Chem. Solids. 146, 109601 (2020).
-
Tahir, W. et al. Impact of silver substitution on the structural, magnetic, optical, and antibacterial properties of Cobalt ferrite. Sci. Rep. 2023. 131 13, 1–23 (2023).
-
León Félix, L. et al. Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Sci. Rep. 2017 71 7, 1–8 (2017).
-
Sharaf, E. M. et al. Synergistic antibacterial activity of compact silver/magnetite core-shell nanoparticles core shell against Gram-negative foodborne pathogens. Front Microbiol 13, (2022).
-
Najafpoor, A. et al. Effect of magnetic nanoparticles and silver-loaded magnetic nanoparticles on advanced wastewater treatment and disinfection. (2020). https://doi.org/10.1016/j.molliq.2020.112640
-
Surendhiran, D., Sirajunnisa, A. & Tamilselvam, K. Silver–magnetic nanocomposites for water purification. Environ. Chem. Lett. 15, 367–386 (2017).
-
Yu, Y. et al. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: recent advancements and critical challenges. Water Res. 222, 118901 (2022).
-
Siddiqi, K. S., Husen, A. & Rao, R. A. K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology 16, 1–28 (2018). (2018).
-
Marambio-Jones, C. & Hoek, E. M. V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 12, 1531–1551 (2010). (2010).
-
Bruna, T., Maldonado-Bravo, F., Jara, P. & Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021. 22, 7202 (2021).
-
Kumar, S. et al. Silver Micro-Nanoparticles – Properties, Synthesis, Characterization, and applications. Silver Micro-Nanoparticles – Prop. Synth. Charact. Appl. https://doi.org/10.5772/INTECHOPEN.92480 (2021).
-
Pinto, M. et al. Application of magnetic nanoparticles for water purification. Environ. Adv. 2, 100010 (2020).
-
Hassan, A., Sorour, N. M., El-Baz, A. & Shetaia, Y. Simple synthesis of bacterial cellulose/magnetite nanoparticles composite for the removal of antimony from aqueous solution. Int. J. Environ. Sci. Technol. 16, 1433–1448 (2018). (2018).
-
Kunduru, K. R. et al. Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. Water Purif. 33–74. https://doi.org/10.1016/B978-0-12-804300-4.00002-2 (2017).
-
Grün, A. L. et al. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environ. Sci. Eur. 31, 1–22 (2019).
-
Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L. & Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 4271–4275 (2012).
-
Shi, Y. et al. Magnetic properties of Cobalt ferrite nanoparticles synthesized by sol-gel method. IOP Conf. Ser. Mater. Sci. Eng. 73, 012050 (2015).
-
Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S. & Muthamizhchelvan, C. Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater. Res. Bull. 46, 2208–2211 (2011).
-
Batlle, X. & Labarta, A. Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D Appl. Phys. 35, 201 (2002).
-
Ma, J. et al. Preparation of Cobalt ferrite nanoparticles via a novel solvothermal approach using divalent iron salt as precursors. Mater. Res. Bull. 48, 214–217 (2013).
-
Aslibeiki, B. et al. Magnetic hyperthermia properties of CoFe2O4 nanoparticles: effect of polymer coating and interparticle interactions. Ceram. Int. 48, 27995–28005 (2022).
-
Li, X. et al. Size-effect induced cation redistribution on the magnetic properties of well-dispersed CoFe2O4 nanocrystals. J. Alloys Compd. 841, 155710 (2020).
-
Wang, J., Ren, F., Jia, B. & Liu, X. Solvothermal synthesis and characterization of NiFe2O4 nanospheres with adjustable sizes. Solid State Commun. 150, 1141–1144 (2010).
-
Bernaoui, C. R. et al. Synthesis and characterization of NiFe2O4 nanoparticles as reusable magnetic nanocatalyst for organic dyes catalytic reduction: study of the counter anion effect. Mater. Chem. Phys. 292, 126793 (2022).
-
Prieto, P. et al. XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 258, 8807–8813 (2012).
-
Waldron, R. D. Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955).
-
Zhou, B. et al. Rare-earth-mediated magnetism and magneto-optical Kerr effects in nanocrystalline CoFeMn0.9RE0.1O4 thin films. J. Magn. Magn. Mater. 280, 327–333 (2004).
-
Bruce, I. J. et al. Synthesis, characterisation and application of silica-magnetite nanocomposites. J. Magn. Magn. Mater. 284, 145–160 (2004).
-
Kłodzińska, E. et al. Effect of zeta potential value on bacterial behavior during electrophoretic separation. Electrophoresis 31, 1590–1596 (2010).
-
Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007).
-
Fu, G., Vary, P. S. & Lin, C. T. Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B. 109, 8889–8898 (2005).
-
Mikhailova, E. O. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. Vol. 11, Page 84 11, 84 (2020). (2020).
-
Neal, A. L. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17, 362–371 (2008).
-
Wu, G. et al. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility. J. Antibiot. 68, 661–665 (2015). (2015).
-
Abbaszadegan, A. et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against Gram-Positive and Gram-Negative bacteria: A preliminary study. J. Nanomater. 2015, 8. https://doi.org/10.1155/2015/720654 (2015).
-
Tippayawat, P., Phromviyo, N., Boueroy, P. & Chompoosor, A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ (2016). (2016).
-
Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017).
-
Jo, D. H., Kim, J. H., Lee, T. G. & Kim, J. H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed. Nanatechnol. Biol. Med. 11, 1603–1611 (2015).
-
Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H. & Park, W. H. Shape-dependent antimicrobial activities of silver nanoparticles. Int. J. Nanomed. 14, 2773–2780 (2019).
-
Sharma, V. K. & Zboril, R. Silver nanoparticles in natural environment: Formation, Fate, and toxicity. 239–258 (2017). https://doi.org/10.1007/978-981-10-5864-6_10
-
Wei, M., Huang, A. C., Shu, C. M. & Zhang, L. Thermal decomposition and nonisothermal kinetics of monoethanolamine mixed with various metal ions. Sci. Rep. 2019. 91 9, 1–9 (2019).
-
Chi, S. & Rochelle, G. T. Oxidative degradation of monoethanolamine. Ind. Eng. Chem. Res. 41, 4178–4186 (2002).
-
Rijo, P. et al. Glycyrrhizic acid nanoparticles subside the activity of Methicillin-Resistant Staphylococcus aureus by suppressing PBP2a. Pharmaceuticals 17, 589 (2024).
-
Hassan, A. et al. Inhibition mechanism of Methicillin-Resistant Staphylococcus aureus by zinc oxide nanorods via suppresses Penicillin-Binding protein 2a. ACS Omega. 8, 9969–9977 (2023).
