Core–shell structured silver-ferrite nanoparticles for antibacterial action and magnetic removal of bacteria from aqueous media

core–shell-structured-silver-ferrite-nanoparticles-for-antibacterial-action-and-magnetic-removal-of-bacteria-from-aqueous-media
Core–shell structured silver-ferrite nanoparticles for antibacterial action and magnetic removal of bacteria from aqueous media

References

  1. Keshri, S. & Biswas, S. Synthesis, physical properties, and biomedical applications of magnetic nanoparticles: a review. Prog Biomater. 11, 347–372 (2022).

    Google Scholar 

  2. Li, Z., Zhang, J., Li, X., Guo, X. & Zhang, Z. Preparation and evaluation of multifunctional autofluorescent magnetic Nanoparticle–Based drug delivery systems against mammary cancer. J. Pharm. Sci. 107, 2694–2701 (2018).

    Google Scholar 

  3. Ilosvai, Á. M. et al. Development of Polymer-Encapsulated, Amine-Functionalized zinc ferrite nanoparticles as MRI contrast agents. Int. J. Mol. Sci. 2023. 24, 16203 (2023).

    Google Scholar 

  4. Heydari, F. I. et al. Solvothermal synthesis of Polyvinyl pyrrolidone encapsulated, amine-functionalized copper ferrite and its use as a magnetic resonance imaging contrast agent. PLoS One. 20, e0316221 (2025).

    Google Scholar 

  5. Gerzsenyi, T. B. et al. A simplified and efficient method for production of manganese ferrite magnetic nanoparticles and their application in DNA isolation. Int. J. Mol. Sci. 24, 2156 (2023).

    Google Scholar 

  6. Maniotis, N., Gitsou, M. & Maragakis, M. Conjugating magnetic nanoparticles anisotropy to their dipolar interactions: effect on the hyperthermic losses index via micromagnetic simulations. J. Magn. Magn. Mater. 617, 172843 (2025).

    Google Scholar 

  7. Nori, Z. Z. et al. Synthesis and characterization of a new gold-coated magnetic nanoparticle decorated with a thiol-containing dendrimer for targeted drug delivery, hyperthermia treatment and enhancement of MRI contrast agent. J. Drug Deliv Sci. Technol. 81, 104216 (2023).

    Google Scholar 

  8. Karakatsanis, A. et al. Superparamagnetic iron oxide nanoparticles as the sole method for Sentinel node biopsy detection in patients with breast cancer. Br. J. Surg. 104, 1675–1685 (2017).

    Google Scholar 

  9. Gupta, N., Jain, P., Rana, R. & Shrivastava, S. Current development in synthesis and characterization of nickel ferrite nanoparticle. Mater. Today Proc. 4, 342–349 (2017).

    Google Scholar 

  10. Poon, K., Gupta, A., Hawkins, P. M. E. & Singh, G. Core-shell magnetic nanoparticles: Harnessing synergistic effects for MRI and magnetic hyperthermia. Mater. Today Chem. 44, 102533 (2025).

    Google Scholar 

  11. Sreelekshmi, D., Adarsh, V. S. & Kumar, R. V. Anticancerous activity of Annona muricata-mediated cerium doped nickel ferrite spinel nanoparticles. Mater. Chem. Phys. 332, 130138 (2025).

    Google Scholar 

  12. Zemlianskii, P. V., Kustov, A. L., Timofeeva, M. N. & Kustov, L. M. Microwave irradiation as an instrument for tuning of physicochemical and catalytic properties of MFe2O4 spinels. Chem. Eng. Process. – Process. Intensif. 208, 110138 (2025).

    Google Scholar 

  13. Bayrakdar, H., Yalçın, O., Özüm, S. & Cengiz, U. Synthesis and investigation of small g-values for smart spinel ferrite nanoparticles. J. Alloys Compd. 869, 159334 (2021).

    Google Scholar 

  14. Reddy, M. P. & Mohamed, A. M. A. One-pot solvothermal synthesis and performance of mesoporous magnetic ferrite MFe2O4 nanospheres. Microporous Mesoporous Mater. 215, 37–45 (2015).

    Google Scholar 

  15. Azam, A. Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles. J. Alloys Compd. 540, 145–153 (2012).

    Google Scholar 

  16. Ramesh, T. et al. Impact of ultrasonic-assisted co-precipitation synthesis and ultrasonication duration on Cobalt ferrite nanostructures: A comparative study of structural, morphological, optical and magnetic properties. Inorg. Chem. Commun. 174, 114035 (2025).

    Google Scholar 

  17. Aoopngan, C. et al. Amine-Functionalized and Hydroxyl-Functionalized magnesium ferrite nanoparticles for congo red adsorption. ACS Appl. Nano Mater. 2, 5329–5341 (2019).

    Google Scholar 

  18. Zhu, Y. & Wu, Q. Synthesis of magnetite nanoparticles by precipitation with forced mixing. J. Nanoparticle Res. 1, 393–396 (1999).

    Google Scholar 

  19. Zain, U. et al. A comprehensive review on the synthesis of ferrite nanomaterials via bottom-up and top-down approaches advantages, disadvantages, characterizations and computational insights. Coord. Chem. Rev. 520, 216158 (2024).

    Google Scholar 

  20. Rane, A. V., Kanny, K., Abitha, V. K. & Thomas, S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synthesis Inorg. Nanomaterials: Adv. Key Technol. (Elsevier), 121–139. https://doi.org/10.1016/B978-0-08-101975-7.00005-1 (2018).

  21. Gan, Y. X., Jayatissa, A. H., Yu, Z., Chen, X. & Li, M. Hydrothermal Synthesis of Nanomaterials. J. Nanomater. 8917013 (2020). (2020).

  22. Torres-Gómez, N. et al. Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: effect of temperature. J. Nanomater. 7921273 2019 (2019).

  23. Mizutani, N., Iwasaki, T., Watano, S., Yanagida, T. & Kawai, T. Size control of magnetite nanoparticles in hydrothermal synthesis by coexistence of lactate and sulfate ions. Curr. Appl. Phys. 10, 801–806 (2010).

    Google Scholar 

  24. Ghosh Chaudhuri, R. & Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).

    Google Scholar 

  25. Mahdavi, Z. & Rezvani, H. Keshavarz Moraveji, M. Core–shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv. 10, 18280–18295 (2020).

    Google Scholar 

  26. Kargar, S., Elhamifar, D. & Zarnegaryan, A. Core–shell structured Fe3O4@SiO2-supported IL/[Mo6O19]: A novel and magnetically recoverable nanocatalyst for the Preparation of biologically active dihydropyrimidinones. J. Phys. Chem. Solids. 146, 109601 (2020).

    Google Scholar 

  27. Tahir, W. et al. Impact of silver substitution on the structural, magnetic, optical, and antibacterial properties of Cobalt ferrite. Sci. Rep. 2023. 131 13, 1–23 (2023).

    Google Scholar 

  28. León Félix, L. et al. Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Sci. Rep. 2017 71 7, 1–8 (2017).

    Google Scholar 

  29. Sharaf, E. M. et al. Synergistic antibacterial activity of compact silver/magnetite core-shell nanoparticles core shell against Gram-negative foodborne pathogens. Front Microbiol 13, (2022).

  30. Najafpoor, A. et al. Effect of magnetic nanoparticles and silver-loaded magnetic nanoparticles on advanced wastewater treatment and disinfection. (2020). https://doi.org/10.1016/j.molliq.2020.112640

  31. Surendhiran, D., Sirajunnisa, A. & Tamilselvam, K. Silver–magnetic nanocomposites for water purification. Environ. Chem. Lett. 15, 367–386 (2017).

    Google Scholar 

  32. Yu, Y. et al. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: recent advancements and critical challenges. Water Res. 222, 118901 (2022).

    Google Scholar 

  33. Siddiqi, K. S., Husen, A. & Rao, R. A. K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology 16, 1–28 (2018). (2018).

  34. Marambio-Jones, C. & Hoek, E. M. V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 12, 1531–1551 (2010). (2010).

  35. Bruna, T., Maldonado-Bravo, F., Jara, P. & Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021. 22, 7202 (2021).

    Google Scholar 

  36. Kumar, S. et al. Silver Micro-Nanoparticles – Properties, Synthesis, Characterization, and applications. Silver Micro-Nanoparticles – Prop. Synth. Charact. Appl. https://doi.org/10.5772/INTECHOPEN.92480 (2021).

    Google Scholar 

  37. Pinto, M. et al. Application of magnetic nanoparticles for water purification. Environ. Adv. 2, 100010 (2020).

    Google Scholar 

  38. Hassan, A., Sorour, N. M., El-Baz, A. & Shetaia, Y. Simple synthesis of bacterial cellulose/magnetite nanoparticles composite for the removal of antimony from aqueous solution. Int. J. Environ. Sci. Technol. 16, 1433–1448 (2018). (2018).

  39. Kunduru, K. R. et al. Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. Water Purif. 33–74. https://doi.org/10.1016/B978-0-12-804300-4.00002-2 (2017).

  40. Grün, A. L. et al. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environ. Sci. Eur. 31, 1–22 (2019).

    Google Scholar 

  41. Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L. & Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 4271–4275 (2012).

    Google Scholar 

  42. Shi, Y. et al. Magnetic properties of Cobalt ferrite nanoparticles synthesized by sol-gel method. IOP Conf. Ser. Mater. Sci. Eng. 73, 012050 (2015).

    Google Scholar 

  43. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S. & Muthamizhchelvan, C. Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater. Res. Bull. 46, 2208–2211 (2011).

    Google Scholar 

  44. Batlle, X. & Labarta, A. Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D Appl. Phys. 35, 201 (2002).

    Google Scholar 

  45. Ma, J. et al. Preparation of Cobalt ferrite nanoparticles via a novel solvothermal approach using divalent iron salt as precursors. Mater. Res. Bull. 48, 214–217 (2013).

    Google Scholar 

  46. Aslibeiki, B. et al. Magnetic hyperthermia properties of CoFe2O4 nanoparticles: effect of polymer coating and interparticle interactions. Ceram. Int. 48, 27995–28005 (2022).

    Google Scholar 

  47. Li, X. et al. Size-effect induced cation redistribution on the magnetic properties of well-dispersed CoFe2O4 nanocrystals. J. Alloys Compd. 841, 155710 (2020).

    Google Scholar 

  48. Wang, J., Ren, F., Jia, B. & Liu, X. Solvothermal synthesis and characterization of NiFe2O4 nanospheres with adjustable sizes. Solid State Commun. 150, 1141–1144 (2010).

    Google Scholar 

  49. Bernaoui, C. R. et al. Synthesis and characterization of NiFe2O4 nanoparticles as reusable magnetic nanocatalyst for organic dyes catalytic reduction: study of the counter anion effect. Mater. Chem. Phys. 292, 126793 (2022).

    Google Scholar 

  50. Prieto, P. et al. XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 258, 8807–8813 (2012).

    Google Scholar 

  51. Waldron, R. D. Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955).

    Google Scholar 

  52. Zhou, B. et al. Rare-earth-mediated magnetism and magneto-optical Kerr effects in nanocrystalline CoFeMn0.9RE0.1O4 thin films. J. Magn. Magn. Mater. 280, 327–333 (2004).

    Google Scholar 

  53. Bruce, I. J. et al. Synthesis, characterisation and application of silica-magnetite nanocomposites. J. Magn. Magn. Mater. 284, 145–160 (2004).

    Google Scholar 

  54. Kłodzińska, E. et al. Effect of zeta potential value on bacterial behavior during electrophoretic separation. Electrophoresis 31, 1590–1596 (2010).

    Google Scholar 

  55. Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007).

    Google Scholar 

  56. Fu, G., Vary, P. S. & Lin, C. T. Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B. 109, 8889–8898 (2005).

    Google Scholar 

  57. Mikhailova, E. O. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. Vol. 11, Page 84 11, 84 (2020). (2020).

  58. Neal, A. L. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17, 362–371 (2008).

    Google Scholar 

  59. Wu, G. et al. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility. J. Antibiot. 68, 661–665 (2015). (2015).

  60. Abbaszadegan, A. et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against Gram-Positive and Gram-Negative bacteria: A preliminary study. J. Nanomater. 2015, 8. https://doi.org/10.1155/2015/720654 (2015).

  61. Tippayawat, P., Phromviyo, N., Boueroy, P. & Chompoosor, A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ (2016). (2016).

  62. Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017).

    Google Scholar 

  63. Jo, D. H., Kim, J. H., Lee, T. G. & Kim, J. H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed. Nanatechnol. Biol. Med. 11, 1603–1611 (2015).

    Google Scholar 

  64. Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H. & Park, W. H. Shape-dependent antimicrobial activities of silver nanoparticles. Int. J. Nanomed. 14, 2773–2780 (2019).

    Google Scholar 

  65. Sharma, V. K. & Zboril, R. Silver nanoparticles in natural environment: Formation, Fate, and toxicity. 239–258 (2017). https://doi.org/10.1007/978-981-10-5864-6_10

  66. Wei, M., Huang, A. C., Shu, C. M. & Zhang, L. Thermal decomposition and nonisothermal kinetics of monoethanolamine mixed with various metal ions. Sci. Rep. 2019. 91 9, 1–9 (2019).

    Google Scholar 

  67. Chi, S. & Rochelle, G. T. Oxidative degradation of monoethanolamine. Ind. Eng. Chem. Res. 41, 4178–4186 (2002).

    Google Scholar 

  68. Rijo, P. et al. Glycyrrhizic acid nanoparticles subside the activity of Methicillin-Resistant Staphylococcus aureus by suppressing PBP2a. Pharmaceuticals 17, 589 (2024).

    Google Scholar 

  69. Hassan, A. et al. Inhibition mechanism of Methicillin-Resistant Staphylococcus aureus by zinc oxide nanorods via suppresses Penicillin-Binding protein 2a. ACS Omega. 8, 9969–9977 (2023).

    Google Scholar 

Download references