CRAGE-RB-PI-seq reveals transcriptional dynamics of plant-associated bacteria during root colonization

crage-rb-pi-seq-reveals-transcriptional-dynamics-of-plant-associated-bacteria-during-root-colonization
CRAGE-RB-PI-seq reveals transcriptional dynamics of plant-associated bacteria during root colonization

References

  1. Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).

    Google Scholar 

  2. McLaughlin, S., Zhalnina, K., Kosina, S., Northen, T. R. & Sasse, J. The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat. Commun. 14, 1649 (2023).

    Google Scholar 

  3. Jansson, J. K., McClure, R. & Egbert, R. G. Soil microbiome engineering for sustainability in a changing environment. Nat. Biotechnol. 1–13, https://doi.org/10.1038/s41587-023-01932-3 (2023).

  4. Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).

    Google Scholar 

  5. Wang, N. R. et al. Commensal pseudomonas fluorescens strains protect arabidopsis from closely related pseudomonas pathogens in a colonization-dependent manner. mBio 13, e02892–21 (2022).

    Google Scholar 

  6. Acharya, S. M. et al. Fine scale sampling reveals early differentiation of rhizosphere microbiome from bulk soil in young Brachypodium plant roots. ISME Commun. 3, 1–9 (2023).

    Google Scholar 

  7. Huang, A. C. et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389 (2019).

    Google Scholar 

  8. Levy, A. et al. Genomic features of bacterial adaptation to plants. Nat. Genet. 50, 138–150 (2018).

    Google Scholar 

  9. Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    Google Scholar 

  10. Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).

    Google Scholar 

  11. Pieterse, C. M. J. et al. Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant Soil 461, 245–263 (2021).

    Google Scholar 

  12. Berendsen, R. L. et al. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 16, 539 (2015).

    Google Scholar 

  13. Van Wees, S. C., Van der Ent, S. & Pieterse, C. M. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443–448 (2008).

    Google Scholar 

  14. Yu, K. et al. Rhizosphere-associated pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH. Curr. Biol. 29, 3913–3920.e4 (2019).

    Google Scholar 

  15. Cole, B. J. et al. Genome-wide identification of bacterial plant colonization genes. PLOS Biol. 15, e2002860 (2017).

    Google Scholar 

  16. Stringlis, I. A. et al. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. 93, 166–180 (2018).

    Google Scholar 

  17. Bjornson, M., Pimprikar, P., Nürnberger, T. & Zipfel, C. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nat. Plants 7, 579–586 (2021).

    Google Scholar 

  18. Verbon, E. H. et al. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. Mol. Plant 16, 1160–1177 (2023).

    Google Scholar 

  19. Humphrys, M. S. et al. Simultaneous transcriptional profiling of bacteria and their host cells. PLOS One 8, e80597 (2013).

    Google Scholar 

  20. Marsh, J. W., Humphrys, M. S. & Myers, G. S. A. A laboratory methodology for dual RNA-sequencing of bacteria and their host cells in vitro. Front. Microbiol. 8, 1830(2017).

  21. Westermann, A. J., Barquist, L. & Vogel, J. Resolving host–pathogen interactions by dual RNA-seq. PLOS Pathog 13, e1006033 (2017).

    Google Scholar 

  22. Donaldson, G. P. et al. Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice. Nat. Microbiol. 5, 746–756 (2020).

    Google Scholar 

  23. Andrés-Barrao, C. et al. Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187–induced plant salt stress tolerance. Proc. Natl. Acad. Sci. 118, e2107417118 (2021).

  24. Vannier, N. et al. Genome-resolved metatranscriptomics reveals conserved root colonization determinants in a synthetic microbiota. Nat. Commun. 14, 8274 (2023).

    Google Scholar 

  25. Kumar, N. et al. Efficient enrichment of bacterial mRNA from host-bacteria total RNA samples. Sci. Rep. 6, 34850 (2016).

    Google Scholar 

  26. Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl. Acad. Sci. 115, E3055–E3064 (2018).

    Google Scholar 

  27. Roux, B. et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77, 817–837 (2014).

    Google Scholar 

  28. Ma, Q., Bücking, H., Gonzalez Hernandez, J. L. & Subramanian, S. Single-cell RNA sequencing of plant-associated bacterial communities. Front. Microbiol. 10, 2452 (2019).

  29. Johns, N. I. et al. Metagenomic mining of regulatory elements enables programmable species-selective gene expression. Nat. Methods 15, 323–329 (2018).

    Google Scholar 

  30. Jones, E. M. et al. A scalable, multiplexed assay for decoding GPCR-ligand interactions with RNA sequencing. Cell Syst. 8, 254–260.e6 (2019).

    Google Scholar 

  31. Crook, N., Ferreiro, A., Condiotte, Z. & Dantas, G. Transcript barcoding illuminates the expression level of synthetic constructs in E. coli nissle residing in the mammalian gut. ACS Synth. Biol. 9, 1010–1021 (2020).

    Google Scholar 

  32. Jores, T. et al. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nat. Plants, https://doi.org/10.1038/s41477-021-00932-y (2021).

  33. Wang, G. et al. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat. Microbiol. 4, 2498–2510 (2019).

    Google Scholar 

  34. Wang, B. et al. CRAGE-duet facilitates modular assembly of biological systems for studying plant–microbe interactions. ACS Synth. Biol. 9, 2610–2615 (2020).

    Google Scholar 

  35. Cho, B.-K. et al. The transcription unit architecture of the Escherichia coli genome. Nat. Biotechnol. 27, 1043–1049 (2009).

    Google Scholar 

  36. Wurtzel, O. et al. The single-nucleotide resolution transcriptome of pseudomonas aeruginosa grown in body temperature. PLOS Pathog 8, e1002945 (2012).

    Google Scholar 

  37. Filiatrault, M. J. et al. Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. PLOS ONE 6, e29335 (2011).

    Google Scholar 

  38. Salgado, H., Moreno-Hagelsieb, G., Smith, T. F. & Collado-Vides, J. Operons in Escherichia coli: genomic analyses and predictions. Proc. Natl. Acad. Sci. 97, 6652–6657 (2000).

    Google Scholar 

  39. Tjaden, B. A computational system for identifying operons based on RNA-seq data. Methods 176, 62–70 (2020).

    Google Scholar 

  40. Lugtenberg, B. J. J., Dekkers, L. & Bloemberg, G. V. Molecular determinants of rhizosphere colonization by pseudomonas. Annu. Rev. Phytopathol. 39, 461–490 (2001).

    Google Scholar 

  41. Muñoz-Elías, E. J. & McKinney, J. D. Carbon metabolism of intracellular bacteria. Cell. Microbiol. 8, 10–22 (2006).

    Google Scholar 

  42. Chen, H., Shiroguchi, K., Ge, H. & Xie, X. S. Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli. Mol. Syst. Biol. 11, 781 (2015).

    Google Scholar 

  43. Waters, L. S. & Storz, G. Regulatory RNAs in bacteria. Cell 136, 615–628 (2009).

    Google Scholar 

  44. Winnen, B., Hvorup, R. N. & Saier, M. H. The tripartite tricarboxylate transporter (TTT) family. Res. Microbiol. 154, 457–465 (2003).

    Google Scholar 

  45. Brocker, M., Schaffer, S., Mack, C. & Bott, M. Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J. Bacteriol. 191, 3869 (2009).

    Google Scholar 

  46. Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).

    Google Scholar 

  47. De Weger, L. A. et al. Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J. Bacteriol. 169, 2769–2773 (1987).

    Google Scholar 

  48. Sivakumar, R. et al. Evaluation of INSeq To Identify Genes Essential for Pseudomonas aeruginosa PGPR2 Corn Root Colonization. G3 GenesGenomesGenetics 9, 651–661 (2019).

    Google Scholar 

  49. Pankievicz, V. C. S. et al. RNA-seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots. Plant Mol. Biol. 90, 589–603 (2016).

    Google Scholar 

  50. Nobori, T. et al. Dissecting the cotranscriptome landscape of plants and their microbiota. EMBO Rep. 23, e55380 (2022).

    Google Scholar 

  51. WOJTASZEK, P. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322, 681–692 (1997).

    Google Scholar 

  52. Ebel, J. & Mithöfer, A. Early events in the elicitation of plant defence. Planta 206, 335–348 (1998).

    Google Scholar 

  53. Danhorn, T. & Fuqua, C. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 61, 401–422 (2007).

    Google Scholar 

  54. Rudrappa, T., Biedrzycki, M. L. & Bais, H. P. Causes and consequences of plant-associated biofilms. FEMS Microbiol. Ecol. 64, 153–166 (2008).

    Google Scholar 

  55. Callewaert, L. et al. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLOS Pathog. 4, e1000019 (2008).

    Google Scholar 

  56. Yum, S. et al. Structural basis for the recognition of lysozyme by MliC, a periplasmic lysozyme inhibitor in Gram-negative bacteria. Biochem. Biophys. Res. Commun. 378, 244–248 (2009).

    Google Scholar 

  57. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  58. Liu, X. et al. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis. eLife 3, e01990 (2014).

    Google Scholar 

  59. Eitzen, K., Sengupta, P., Kroll, S., Kemen, E. & Doehlemann, G. A fungal member of the Arabidopsis thaliana phyllosphere antagonizes Albugo laibachii via a GH25 lysozyme. eLife 10, e65306 (2021).

    Google Scholar 

  60. Lee, K.-M. et al. A genetic screen reveals novel targets to render pseudomonas aeruginosa sensitive to lysozyme and cell wall-targeting antibiotics. Front. Cell. Infect. Microbiol. 7, 59 (2017).

  61. Torrens, G. et al. Targeting the permeability barrier and peptidoglycan recycling pathways to disarm Pseudomonas aeruginosa against the innate immune system. PLOS One 12, e0181932 (2017).

    Google Scholar 

  62. Flores-Cruz, Z. & Allen, C. Ralstonia solanacearum encounters an oxidative environment during tomato infection. Mol. Plant Microbe Interactions 22, 773–782 (2009).

    Google Scholar 

  63. Phelan, J. P., Bourgeois, J. S., McCarthy, J. E. & Hu, L. T. A putative xanthine dehydrogenase is critical for Borrelia burgdorferi survival in ticks and mice. Microbiology 169, 001286 (2023).

    Google Scholar 

  64. Sasse, J. et al. Root morphology and exudate availability are shaped by particle size and chemistry in Brachypodium distachyon. Plant Direct 4, e00207 (2020).

    Google Scholar 

  65. Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).

    Google Scholar 

  66. Plesa, C., Sidore, A. M., Lubock, N. B., Zhang, D. & Kosuri, S. Multiplexed gene synthesis in emulsions for exploring protein functional landscapes. Science 359, 343–347 (2018).

    Google Scholar 

  67. Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255 (2010).

    Google Scholar 

  68. Adiconis, X. et al. Comprehensive comparative analysis of 5′-end RNA-sequencing methods. Nat. Methods 15, 505–511 (2018).

    Google Scholar 

  69. Yu, K. et al. Transcriptome signatures in Pseudomonas simiae WCS417 shed light on role of root-secreted coumarins in arabidopsis-mutualist communication. Microorganisms 9, 575 (2021).

    Google Scholar 

  70. Canarini, A., Kaiser, C., Merchant, A., Richter, A. & Wanek, W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).

  71. Gliese, N., Khodaverdi, V., Schobert, M. & Görisch, H. AgmR controls transcription of a regulon with several operons essential for ethanol oxidation in Pseudomonas aeruginosa ATCC 17933. Microbiology 150, 1851–1857 (2004).

    Google Scholar 

  72. Choi, O. et al. Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol. 146, 657–668 (2008).

    Google Scholar 

  73. Carreño-López, R., Alatorre-Cruz, J. M. & Marín-Cevada, V. Pyrroloquinoline quinone (PQQ): role in plant-microbe interactions. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications (eds Singh, H. B., Keswani, C., Reddy, M. S., Sansinenea, E. & García-Estrada, C.) 169–184 (Springer, Singapore, 2019). https://doi.org/10.1007/978-981-13-5862-3_9.

  74. Wang, X. et al. Elucidation of genes enhancing natural product biosynthesis through co-evolution analysis. Nat. Metab. 1–14, https://doi.org/10.1038/s42255-024-01024-9 (2024).

  75. Boo, A. et al. Synthetic microbe-to-plant communication channels. Nat. Commun. 15, 1817 (2024).

    Google Scholar 

  76. Pini, F. et al. Bacterial biosensors for in vivo spatiotemporal mapping of root secretion. Plant Physiol. 174, 1289–1306 (2017).

    Google Scholar 

  77. Haskett, T. L. et al. Engineered plant control of associative nitrogen fixation. Proc. Natl. Acad. Sci. 119, e2117465119 (2022).

    Google Scholar 

  78. Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    Google Scholar 

  79. Law, C. W. et al. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research 5, ISCB Comm J–1408 (2018).

    Google Scholar 

  80. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).

    Google Scholar 

  81. Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    Google Scholar 

  82. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Google Scholar 

  83. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Google Scholar 

Download references