Crosslinking of lipid nanoparticles enhances the delivery efficiency and efficacy of mRNA vaccines

crosslinking-of-lipid-nanoparticles-enhances-the-delivery-efficiency-and-efficacy-of-mrna-vaccines
Crosslinking of lipid nanoparticles enhances the delivery efficiency and efficacy of mRNA vaccines

Data availability

The data supporting the findings of this study are available in the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Huang, X. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17, 1027–1037 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Warne, N. et al. Delivering 3 billion doses of Comirnaty in 2021. Nat. Biotechnol. 41, 183–188 (2023).

    CAS  PubMed  Google Scholar 

  6. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, C. et al. mRNA-based cancer therapeutics. Nat. Rev. Cancer 23, 526–543 (2023).

    Article  PubMed  Google Scholar 

  10. Sharma, P., Hoorn, D., Aitha, A., Breier, D. & Peer, D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv. Drug Deliv. Rev. 205, 115175 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Samaridou, E., Heyes, J. & Lutwyche, P. Lipid nanoparticles for nucleic acid delivery: current perspectives. Adv. Drug Deliv. Rev. 154–155, 37–63 (2020).

    Article  PubMed  Google Scholar 

  12. Chen, S. et al. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Primers 3, 63 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Slezak, A. et al. Therapeutic synthetic and natural materials for immunoengineering. Chem. Soc. Rev. 53, 1789–1822 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bitounis, D., Jacquinet, E., Rogers, M. A. & Amiji, M. M. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat. Rev. Drug Discov. 23, 281–300 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, A. Y. et al. Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol. 19, 364–375 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Gupta, A., Andresen, J. L., Manan, R. S. & Langer, R. Nucleic acid delivery for therapeutic applications. Adv. Drug Deliv. Rev. 178, 113834 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, S. et al. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat. Commun. 15, 9471 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xue, L. et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. 20, 132–143 (2025).

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, S. et al. Acid-degradable lipid nanoparticles enhance the delivery of mRNA. Nat. Nanotechnol. 19, 1702–1711 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu, Y. et al. Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity. Nat. Biomed. Eng. 8, 544–560 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lian, X. et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nat. Nanotechnol. 19, 1409–1417 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown, D. W. et al. Safe and effective in vivo delivery of DNA and RNA using proteolipid vehicles. Cell 187, 5357–5375.e24 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y., Xiao, K., Zhu, W., Deng, W. & Lam, K. S. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv. Drug Deliv. Rev. 66, 58–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, X.-H. et al. Trehalose-loaded LNPs enhance mRNA stability and bridge in vitro in vivo efficacy gap. NPJ Vaccines 10, 201 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, S. et al. Payload distribution and capacity of mRNA lipid nanoparticles. Nat. Commun. 13, 5561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chatterjee, S., Kon, E., Sharma, P. & Peer, D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl Acad. Sci. USA 121, e2307800120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng, L., Bandara, S. R., Tan, Z. & Leal, C. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Proc. Natl Acad. Sci. USA 120, e2301067120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rui, Y. et al. High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Sci. Adv. 8, eabk2855 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Packer, M., Gyawali, D., Yerabolu, R., Schariter, J. & White, P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat. Commun. 12, 6777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hashiba, K. et al. Overcoming thermostability challenges in mRNA-lipid nanoparticle systems with piperidine-based ionizable lipids. Commun. Biol. 7, 556 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, X., Barraza, K. M. & Beauchamp, J. L. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air-water interface. Proc. Natl Acad. Sci. USA 115, 3255–3260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kafle, U., Truong, H. Q., Nguyen, C. T. G. & Meng, F. Development of thermally stable mRNA-LNP delivery systems: current progress and future prospects. Mol. Pharm. 21, 5944–5959 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Kafetzis, K. N. et al. The effect of cryoprotectants and storage conditions on the transfection efficiency, stability, and safety of lipid-based nanoparticles for mRNA and DNA delivery. Adv. Healthc. Mater. 12, 2203022 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karlsson, J. et al. Photocrosslinked bioreducible polymeric nanoparticles for enhanced systemic siRNA delivery as cancer therapy. Adv. Funct. Mater. 31, 2009768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Teo, J. et al. A rationally optimized nanoparticle system for the delivery of RNA interference therapeutics into pancreatic tumors in vivo. Biomacromolecules 17, 2337–2351 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Back, P. I. et al. Immune implications of cholesterol-containing lipid nanoparticles. ACS Nano 18, 28480–28501 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is partially supported by National Institutes of Health grants R01CA293906-01A1 (H.-Q.M.), P41EB028239 (H.-Q.M.), R01CA260628 (T.-H.W.) and R01AI183336 (T.-H.W.). We thank the NIH Tetramer Core Facility (NIH Contract 75N93020D00005 and RRID:SCR_026557) for providing OVA-specific tetramers.

Author information

Author notes

  1. These authors contributed equally: Xiang Liu, Yining Zhu.

Authors and Affiliations

  1. Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA

    Xiang Liu, Yining Zhu, Christine Wei, Jinghan Lin, Di Yu, Jiayuan Kong, Fangchi Shao, Jingyao Ma, Tian Xu, Xiaoya Lu, Yunhe Su, Kailei D. Goodier, Leonardo Cheng, Wu Han Toh, Christopher J. Erb, Sixuan Li, Tza-Huei Wang & Hai-Quan Mao

  2. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA

    Xiang Liu, Jinghan Lin, Jiayuan Kong, Jingyao Ma, Xiaoya Lu, Kailei D. Goodier, Christopher J. Erb, Tza-Huei Wang & Hai-Quan Mao

  3. Translational Therapeutic and Regenerative Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA

    Xiang Liu, Yining Zhu, Christine Wei, Jinghan Lin, Di Yu, Jiayuan Kong, Jingyao Ma, Xiaoya Lu, Yunhe Su, Kailei D. Goodier, Leonardo Cheng, Wu Han Toh, Christopher J. Erb & Hai-Quan Mao

  4. Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA

    Yining Zhu, Christine Wei, Di Yu, Fangchi Shao, Yunhe Su, Leonardo Cheng, Tza-Huei Wang & Hai-Quan Mao

  5. Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA

    Tian Xu

  6. Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

    Wu Han Toh

  7. Department of Biology, Johns Hopkins University, Baltimore, MD, USA

    Wu Han Toh

  8. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA

    Sixuan Li & Tza-Huei Wang

Authors

  1. Xiang Liu
  2. Yining Zhu
  3. Christine Wei
  4. Jinghan Lin
  5. Di Yu
  6. Jiayuan Kong
  7. Fangchi Shao
  8. Jingyao Ma
  9. Tian Xu
  10. Xiaoya Lu
  11. Yunhe Su
  12. Kailei D. Goodier
  13. Leonardo Cheng
  14. Wu Han Toh
  15. Christopher J. Erb
  16. Sixuan Li
  17. Tza-Huei Wang
  18. Hai-Quan Mao

Contributions

X. Liu, Y.Z. and H.-Q.M. conceived and designed this study. H.-Q.M. secured the funding for this study. X. Liu, Y.Z., C.W., J.L., D.Y., J.K., F.S., J.M., T.X., X. Lu, Y.S., K.D.G., L.C., W.H.-T., C.J.E. and S.L. performed the experiments. X. Liu, Y.Z., C.W., J.L., D.Y., J.K., F.S., T.-H.W. and H.-Q.M. carried out the data analysis and interpretation. The paper was written by X. Liu, Y.Z. and H.-Q.M., with revisions by C.W. and inputs from all other authors.

Corresponding author

Correspondence to Hai-Quan Mao.

Ethics declarations

Competing interests

H.-Q.M., Y.Z., and X. Liu are co-inventors of a US provisional patent application covering the cLNP formulations described in this paper, filed through and managed by Johns Hopkins Technology Ventures on 19 July 2025 (application no. 63/847,085). The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Bruno De Geest, Enrico Mastrobattista and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stability of lyophilized SM-102 LNPs and A2C5_25+ cLNPs under different storage conditions.

a. EE% of lyophilized SM-102 LNPs and A2C5_25+ cLNPs measured over time during storage at 25 °C and 40 °C. b. The particle size distribution of lyophilized SM-102 LNPs and A2C5_25+ cLNPs measured over time during storage at 25 °C and 40 °C. Data are from n = 2 (a) biologically independent samples. Data represent mean ± s.e.m. with n = 3 (b) biologically independent samples.

Source data

Extended Data Fig. 2 In vivo toxicity assessment of SM-102 LNPs and A2C5_25+ cLNPs following i.m. injection.

a. Serum levels of ALT, AST, and pro-inflammatory cytokines (IL-6, TNF, IL-10, and IL-12p70) were measured on day 1, day 3, and day 7 after i.m. administration of PBS, SM-102 LNPs, or A2C5_25+ cLNPs. b. Body weight of mice was monitored over 7 days after i.m. injection with the same formulations. Data represent mean ± s.e.m. with n = 4 (ab) biologically independent samples. Box plots in (a) represent the median (center line), the 25th and 75th percentiles (bounds of the box), and the minimum and maximum values (whiskers); individual data points represent values from independent biological replicates.

Source data

Extended Data Fig. 3 In vivo assessment of lyophilized cLNP formulations for enhanced mRNA vaccine immunity.

ad. C57BL/6 mice were administered with PBS, lyophilized SM-102 LNPs, or lyophilized AP23C5_25+ cLNPs loaded with mOVA via i.m. injection (10 μg mOVA per injection). Mice were sacrificed 7 days after the final injection, and their splenocytes were isolated for analysis (a). The percentages of OVA-specific CD8 T cells (B220CD3+CD8+OVA+ cells) (b). Splenocytes were restimulated in vitro with OVA and SIINFEKL peptide (100 μg mL−1 OVA and 2 μg mL−1 SIINFEKL) for 6 h and assessed via flow cytometry and intracellular cytokine staining to determine the percentages of CD3+CD8+IFN-γ+ (c) and CD3+CD8+TNF+ (d). eg. Titers of OVA-specific IgG (e), IgG1 (f), and IgG2c (g) antibodies in blood serum on Day 21, determined by ELISA. Data represent mean ± s.e.m. with n = 5 (bg) biologically independent samples. Box plots in (b-g) represent the median (center line), the 25th and 75th percentiles (bounds of the box), and the minimum and maximum values (whiskers); individual data points represent values from independent biological replicates. Statistical analysis was performed using one-way ANOVA (bd). NS: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Panel a created in BioRender; Mao, H. https://biorender.com/phqg3ye (2026).

Source data

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhu, Y., Wei, C. et al. Crosslinking of lipid nanoparticles enhances the delivery efficiency and efficacy of mRNA vaccines. Nat Chem Eng (2026). https://doi.org/10.1038/s44286-026-00356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44286-026-00356-5