Cryovial versus straw for sheep semen cryopreservation: a comparative study of surface area-to-volume ratio on post-thaw viability and in vitro embryo production

cryovial-versus-straw-for-sheep-semen-cryopreservation:-a-comparative-study-of-surface-area-to-volume-ratio-on-post-thaw-viability-and-in-vitro-embryo-production
Cryovial versus straw for sheep semen cryopreservation: a comparative study of surface area-to-volume ratio on post-thaw viability and in vitro embryo production

References

  1. Naing, S. W. et al. Effect of seminal plasma removal, washing solutions, and centrifugation regimes on Boer goat semen cryopreservation. Pertanika J. Trop. Agric. Sci. 34(2), 271–279 (2011).

    Google Scholar 

  2. Chelucci, S. et al. Soybean lecithin–based extender preserves spermatozoa membrane integrity and fertilizing potential during goat semen cryopreservation. Theriogenology 83(6), 1064–1074 (2015).

    Google Scholar 

  3. Drobnis, E. Z. et al. Cold shock damage is due to lipid phase transitions in cell membranes: A demonstration using sperm as a model. J. Exp. Zool. 265(4), 432–437 (1993).

    Google Scholar 

  4. Grotter, L. G., Cattaneo, L., Marini, P. E., Kjelland, M. E. & Ferré, L. B. Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reprod. Domest. Anim. 54, 655–665 (2019).

    Google Scholar 

  5. Yeste, M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 85, 47–64 (2016).

    Google Scholar 

  6. Said, T. M., Gaglani, A. & Agarwal, A. Implication of apoptosis in sperm cryoinjury. Reprod. Biomed. Online 21, 456–462 (2010).

    Google Scholar 

  7. Fahy, G. M., Lilley, T. H., Linsdell, H., Douglas, M. & Meryman, H. T. Cryoprotectant toxicity and cryoprotectant toxicity reduction: In search of molecular mechanisms. Cryobiology 27, 247–268 (1990).

    Google Scholar 

  8. Byrne, G. P. et al. Effects of freezing rate of Ram spermatozoa on subsequent fertility in vivo and in vitro. Anim. Reprod. Sci. 62, 265–275 (2000).

    Google Scholar 

  9. Coyan, K., Bucak, M. N., Baspınar, N., Taspınar, M. & Aydos, S. Ergothioneine attenuates the DNA damage of post-thawed merinoram sperm. Small Rumin Res. 106, 165–167 (2012).

    Google Scholar 

  10. Chaveiro, A., Liu, J., Mullen, S., Woelders, H. & Critser, J. K. Determination of bull sperm membrane permeability to water and cryoprotectants using a concentration-dependent self-quenching fluorophore. Cryobiology 48, 72–80 (2004).

    Google Scholar 

  11. Aurich, J., Kuhl, J., Tichy, A. & Aurich, C. Efficiency of semen cryopreservation in stallions. Animals 10, 1–13 (2020).

    Google Scholar 

  12. Saha, A., Asaduzzaman, M. & Bari, F. Y. Cryopreservation techniques for ram sperm. Vet. Med. Int. 2022, 7378379 (2022).

  13. Sharma, A., Sood, P. & Chaudhary, J. K. Comparative efficacy of different concentrations of egg yolk for cryopreservation of goat semen. Ind. J. Anim. Sci. 90(4), 560–563 (2020).

    Google Scholar 

  14. Paul, R. K., Kumar, D. & Singh, R. Carboxymethyl cellulose and glycerol act synergistically as cryoprotectant during cryopreservation of ram semen. Cryobiology 101, 61–66 (2021).

    Google Scholar 

  15. Morrell, J. M., Malaluang, P., Ntallaris, T. & Johannisson, A. A practical method for freezing Buck semen. Animals 12, 352 (2022).

    Google Scholar 

  16. Watson, P. F. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60–61, 481–492 (2000).

    Google Scholar 

  17. Berg, A. K. Artificial insemination in sheep in Norway. In Proceedings of Centre for Reproductive Biology (CRB): Special Symposium Aspects of Ovine Reproduction Vol. 8, 35–44 (1999).

  18. Khaki, A., Araghi, A., Ghasemi, A. & Rezaei-larijani, S. Comparison of sperm characteristics, antioxidant and oxidant levels of frozen semen produced in bulls’ 0.5 and 0.25 straws. Caspian J. Reprod. Med. 8(2), 8–16 (2022).

  19. Kang, S. S., Kim, U. H., Lee, M. S., Lee, S. D. & Cho, S. R. Spermatozoa motility, viability, acrosome integrity, mitochondrial membrane potential and plasma membrane integrity in 0.25 and 0.5 straw after frozen-thawing in Hanwoo bull. J. Anim. Reprod. Biotechnol. 35, 307–314 (2020).

    Google Scholar 

  20. Johnson, M. S. et al. Fertility of bull semen packaged in.25 and. 5-milliliter French straws. J. Anim. Sci. 73(7), 1914–1919 (1995).

    Google Scholar 

  21. Nothling, J. O. & Shuttleworth, R. The effect of straw size, freezing rate and thawing rate upon post-thaw quality of dog semen. Theriogenology 63, 1469–1480 (2005).

    Google Scholar 

  22. Stevenson, J. S., Higgins, J. J. & Jung, Y. Pregnancy outcome after insemination of frozen-thawed bovine semen packaged in two straw sizes: A meta-analysis. J. Dairy Sci. 92, 4432–4438 (2009).

    Google Scholar 

  23. Bagheripour, N., Khalili, M. A., Nabi, A., Mahaldashtian, M., Vahidi, S. & Agha-Rahimi, A. A new cryotop vial device system provides an aseptic cryoprotectant-free and centrifuge-free cryopreservation of human spermatozoa (a closed system). Cryobiology 111, 70–75 (2023).

    Google Scholar 

  24. Zwamel, A. H., Fakhrildin, M. M. R. & Hassani, H. H. New technique for human sperm cryopreservation using emptied sheep’s ovarian follicles. Arch. Razi Inst. 78(2), 761–767 (2023).

    Google Scholar 

  25. Ramu, S. & Jeyendran, R. S. The hypo-osmotic swelling test for evaluation of sperm membrane integrity. In Spermatogenesis: Methods and Protocols, Vol. 927 (eds. Carrell, D. T. & Aston, K.I.) 21–25 (2013).

  26. Ramesh, K. G. et al. In vitro production of desired sex ovine embryos modulating polarity of oocytes for sex-specific sperm binding during fertilization. Sci. Rep. 12, 5845. https://doi.org/10.1038/s41598-022-09895-2 (2022).

    Google Scholar 

  27. Watson, P. F., Kunze, E., Cramer, P. & Hammerstedt, R. H. A comparison of critical osmolality, hydraulic conductivity and its activation energy in fowl and bull spermatozoa. J. Androl. 13, 131–138 (1992).

    Google Scholar 

  28. Maxwell, W. M. C. & Watson, P. F. Recent progress in the preservation of ram semen. Anim. Reprod. Sci. 42, 55–65 (1996).

    Google Scholar 

  29. Buyukleblebici, S. et al. Comparing ethylene glycol with glycerol and with or without dithiothreitol and sucrose for cryopreservation of bull semen in egg-yolk containing extenders. Cryobiology 69, 74–78 (2014).

    Google Scholar 

  30. Demyda-Peyras, S. et al. Effect of cooling rate on sperm quality of cryopreserved Andalusian donkey spermatozoa. Anim. Reprod. Sci. 193, 201–208 (2018).

    Google Scholar 

  31. Yoon, S. J., Rahman, M. S., Kwon, W. S., Park, Y. J. & Pang, M. G addition of cryoprotectant significantly alters the epididymal sperm proteome. PLoS ONE 11, e0152690 (2016).

    Google Scholar 

  32. Zhang, L. et al. Effects of different diluents and freezing methods on cryopreservation of Hu ram semen. Vet. Sci. 11, 251 (2024).

    Google Scholar 

  33. Huang, W. J. et al. Sequential interval micro-droplet loading in closed hemi-straw carrier system: A convenient and efficient method for ultra-rapid cryopreservation in extreme oligozoospermia. Cryobiology 93, 75–83 (2020).

    Google Scholar 

  34. Salamon, S. & Maxwell, W. M. C. Frozen storage of ram semen I. Processing, freezing, thawing and fertility after cervical insemination. Anim. Reprod. Sci. 37(3–4), 185–249 (1995).

    Google Scholar 

  35. Santo, M., Di., Tarozzi, N., Nadalini, M. & Borini, A. Human sperm cryopreservation: Update on techniques, effect on DNA integrity, and implications for ART. Adv. Urol. 2012, 854837 (2011).

    Google Scholar 

  36. Holt, W. V. Basic aspects of frozen storage of semen. Anim. Reprod. Sci. 62(1–3), 3–22 (2000).

    Google Scholar 

  37. Medeiros, C. M. O., Forell, F., Oliveira, A. T. D. & Rodrigues, J. L. Current status of sperm cryopreservation: Why isn’t it better? Theriogenology 57(1), 327–344 (2002).

  38. Aghazarian, A., Huf, W., Pflüger, H. & Klatte, T. Standard semen parameters vs. sperm kinematics to predict sperm DNA damage. World J. Mens Health 39(1), 116–122 (2021).

    Google Scholar 

  39. Mukhopadhyay, D., Varghese, A. C., Nandi, P., Banerjee, S. K. & Bhattacharyya, A. K. CASA-based sperm kinematics of environmental risk factor-exposed human semen samples designated as normozoospermic in conventional analysis. Andrologia 42, 242–246 (2010).

    Google Scholar 

  40. Lopez, P. F., Garriga, J., Casas, I., Yeste, M. & Bartumeus, F. Predicting fertility from sperm motility landscapes. Commun. Biol. 5, 1027 (2022).

    Google Scholar 

  41. Aitken, R. J. & Drevet, J. R. The importance of oxidative stress in determining the functionality of mammalian spermatozoa: A two-edged sword. Antioxidants 9(2), 111. https://doi.org/10.3390/antiox9020111 (2020).

    Google Scholar 

  42. Chianese, R. & Pierantoni, R. Mitochondrial reactive oxygen species (ROS) production alters sperm quality. Antioxidants 10(1), 92. https://doi.org/10.3390/antiox10010092 (2021).

    Google Scholar 

  43. Agarwal, A. & Prabakaran, S. A. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Ind. J. Exp. Biol. 43, 963–974 (2005).

    Google Scholar 

Download references